Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capacitor model

Figure 13 Schematic for a model capacitor with gel electrolyte (1) Ni wire, (2) Ni plate, (3) conducting plastic sheet, (4) gel electrolyte, (5) Teflon prop, (6) ACFC electrode, (7) Ni mesh. Figure 13 Schematic for a model capacitor with gel electrolyte (1) Ni wire, (2) Ni plate, (3) conducting plastic sheet, (4) gel electrolyte, (5) Teflon prop, (6) ACFC electrode, (7) Ni mesh.
In the metal industry studies have been made of the phase transitions of metal alloys, modelling capacitors,metal hydration kinetics, precipitation of solutionised aluminium,and mechanisms of solid state transitions. ... [Pg.147]

Evidence for two-dimensional condensation at the water-Hg interface is reviewed by de Levie [135]. Adsorption may also be studied via differential capacity data where the interface is modeled as parallel capacitors, one for the Hg-solvent interface and another for the Hg-adsorbate interface [136, 137]. [Pg.202]

In maldug electrochemical impedance measurements, one vec tor is examined, using the others as the frame of reference. The voltage vector is divided by the current vec tor, as in Ohm s law. Electrochemical impedance measures the impedance of an electrochemical system and then mathematically models the response using simple circuit elements such as resistors, capacitors, and inductors. In some cases, the circuit elements are used to yield information about the kinetics of the corrosion process. [Pg.2439]

Here not only does the resistive portion of the capacitor model cause problems, but if the PCB is laid out asymmetrically between paralleled capacitors, the trace inductance causes unbalanced heating within the capacitors, thus shortening the life of the hottest capacitor. [Pg.139]

Since the interface behaves like a capacitor, Helmholtz described it as two rigid charged planes of opposite sign [2]. For a more quantitative description Gouy and Chapman introduced a model for the electrolyte at a microscopic level [2]. In the Gouy-Chapman approach the interfacial properties are related to ionic distributions at the interface, the solvent is a dielectric medium of dielectric constant e filling the solution half-space up to the perfect charged plane—the wall. The ionic solution is considered as formed... [Pg.803]

A simple model of the e.d.l. was first suggested by Helmholz in which the charges at the interface were regarded as the two plates constituting a parallel plate capacitor, e.g. a plate of metal with excess electrons (the inner Helmholz plane I.H.P.) and a plate of excess positively charged ions (the outer Helmholz plane O.H.P.) in the solution adjacent to the metal the... [Pg.1168]

The simple Helmholz model, in which the charge on the model is regarded as the plate of a capacitor that attracts a counter layer of ions of opposite charge and results in two parallel plates of the same charge density, is inconsistent with the shapes of the electrocapillary curves obtained in practice. It can be shownthat if the Helmholz model applied, the electrocapillary curve would conform to the relationship... [Pg.1177]

The Stern model predicts that the total differential capacitance C will consist of two terms representing two capacitors in series... [Pg.1179]

The uniformity of tantalum powder is also a veiy important parameter of capacitor-grade tantalum powder. The loss of powder uniformity can initiate during the regular reduction process due to varying conditions at the beginning and end of the reduction process. At the end of the process, the concentration of tantalum in the melt is very low, while the sodium content increases. Based on the complex structure model of melts, it should be noted that the desired particle size of the powder is formed at the veiy beginning of the process, while the very fine fraction forms at the end of the process, independent of the initial content of the melt. The use of special equipment enables to perform a continuous reduction process with simultaneous loading of K TaFy and sodium, which can influence the improved uniformity of the primary powder [592,603,604],... [Pg.337]

Fig. A.3. Light meter used by the author (Model 8020, Pelagic Electronics). For total light measurements, the signals are integrated with capacitors. Milliammeter reading is automatically reset at full-scale position, and the number of resets is digitally indicated below the meter. The box at the right contains a photomultiplier and sample compartment. Fig. A.3. Light meter used by the author (Model 8020, Pelagic Electronics). For total light measurements, the signals are integrated with capacitors. Milliammeter reading is automatically reset at full-scale position, and the number of resets is digitally indicated below the meter. The box at the right contains a photomultiplier and sample compartment.
Figure 1-13 displays the experimental dependence of the double-layer capacitance upon the applied potential and electrolyte concentration. As expected for the parallel-plate model, the capacitance is nearly independent of the potential or concentration over several hundreds of millivolts. Nevertheless, a sharp dip in the capacitance is observed (around —0.5 V i.e., the Ep/C) with dilute solutions, reflecting the contribution of the diffuse layer. Comparison of the double layer witii die parallel-plate capacitor is dius most appropriate at high electrolyte concentrations (i.e., when C CH). [Pg.21]

Figures 5.29a and 5.29b show the Bode and Nyquist plot for a resistor, Ro, connected in series with a resistor, Rt, and capacitor, Ci, connected in parallel. This is the simplest model which can be used for a metal-solid electrolyte interface. Note in figure 5.29b how the first intersect of the semicircle with the real axis gives Ro and how the second intersect gives Ro+Rj. Also note how the capacitance, Ct, can be computed from the frequency value, fm, at the top of the semicircle (summit frequency), via C l JifmR . Figures 5.29a and 5.29b show the Bode and Nyquist plot for a resistor, Ro, connected in series with a resistor, Rt, and capacitor, Ci, connected in parallel. This is the simplest model which can be used for a metal-solid electrolyte interface. Note in figure 5.29b how the first intersect of the semicircle with the real axis gives Ro and how the second intersect gives Ro+Rj. Also note how the capacitance, Ct, can be computed from the frequency value, fm, at the top of the semicircle (summit frequency), via C l JifmR .
The sphere-plane capacitor model gives a useful approximate expression for the function f(Rlz). Equation [13] shows that in the region 0 < z/R < I, which is typical in SPFM imaging, / can be approximated by a 1/z dependence. The planar lever adds a nearly constant term. Thus for the range 0 < z < f , we have the following approximate function... [Pg.250]

Following the concepts of H. Helmholtz (1853), the EDL has a rigid structnre, and all excess charges on the solntion side are packed against the interface. Thus, the EDL is likened to a capacitor with plates separated by a distance 5, which is that of the closest approach of an ion s center to the surface. The EDL capacitance depends on 5 and on the value of the dielectric constant s for the medium between the plates. Adopting a value of 5 of 10 to 20 nm and a value of s = 4.5 (the water molecules in the layer between the plates are oriented, and the value of e is much lower than that in the bulk solution), we obtain C = 20 to 40 jjE/cm, which corresponds to the values observed. However, this model has a defect, in that the values of capacitance calculated depend neither on concentration nor on potential, which is at variance with experience (the model disregards thermal motion of the ions). [Pg.151]

Figure 1. The tunneling of a single electron (SE) between two metal electrodes through an intermediate island (quantum dot) can be blocked of the electrostatic energy of a single excess electron trapped on the central island. In case of non-symmetric tunneling barriers (e.g. tunneling junction on the left, and ideal (infinite-resistance) capacitor on the right), this device model describes a SE box . Figure 1. The tunneling of a single electron (SE) between two metal electrodes through an intermediate island (quantum dot) can be blocked of the electrostatic energy of a single excess electron trapped on the central island. In case of non-symmetric tunneling barriers (e.g. tunneling junction on the left, and ideal (infinite-resistance) capacitor on the right), this device model describes a SE box .
This chapter is devoted to the behavior of double layers and inclusion-free membranes. Section II treats two simple models, the elastic dimer and the elastic capacitor. They help to demonstrate the origin of electroelastic instabilities. Section III considers electrochemical interfaces. We discuss theoretical predictions of negative capacitance and how they may be related to reality. For this purpose we introduce three sorts of electrical control and show that this anomaly is most likely to arise in models which assume that the charge density on the electrode is uniform and can be controlled. This real applications only the total charge or the applied voltage can be fixed. We then show that predictions of C < 0 under a-control may indicate that in reality the symmetry breaks. Such interfaces undergo a transition to a nonuniform state the initial uniformity assumption is erroneous. Most... [Pg.66]

Initially the effect of applied voltage on membrane capacitance was attributed to the uniform electrostriction, in the manner of the elastic capacitor model [1,103], The effect of undulations was first considered by Leikin [78], In Ref. 89 the combined effect of undulations and uniform compression is studied, including the possible influence of nonlocality. The differential capacitance C is presented as... [Pg.92]

Whatever the most acceptable model may be and as we need only a rough estimate of the amount of ions discharged, we start from the Helmholtz model of a simple parallel-plate capacitor, whose potential difference is... [Pg.44]

The above relationships were derived for low electrode coverages by the adsorbed substance, where a linear adsorption isotherm could be used. Higher electrode coverages are connected with a marked change in the surface charge. The two-parallel capacitor model proposed by Frumkin and described by the equation... [Pg.241]

The electric field or ionic term corresponds to an ideal parallel-plate capacitor, with potential drop g (ion) = qMd/4ire. Itincludes a contribution from the polarizability of the electrolyte, since the dielectric constant is included in the expression. The distance d between the layers of charge is often taken to be from the outer Helmholtz plane (distance of closest approach of ions in solution to the metal in the absence of specific adsorption) to the position of the image charge in the metal a model for the metal is required to define this position properly. The capacitance per unit area of the ideal capacitor is a constant, e/Aird, often written as Klon. The contribution to 1/C is 1 /Klon this term is much less important in the sum (larger capacitance) than the other two contributions.2... [Pg.14]

The growth of an anodic alumina film, at a constant current, is characterized by a virtually linear increase of the electrode potential with time, exemplified by Fig. 10, with a more or less notable curvature (or an intercept of the extrapolated straight line) at the beginning of anodization.73 This reflects the constant rate of increase of the film thickness. Indeed, a linear relationship was found experimentally between the potential and the inverse capacitance78 (the latter reflecting the thickness in a model of a parallel-plate capacitor under the assumption of a constant dielectric permittivity). This is foreseen by applying Eq. (38) to Eq. (35). It is a consequence of the need for a constant electric field on the film in order to transport constant ionic current, as required by Eqs. (39)-(43). [Pg.424]

MODELING POROSITY DEVELOPMENT DURING KOH ACTIVATION OF COAL AND PITCH-DERIVED CARBONS FOR ELECTROCHEMICAL CAPACITORS... [Pg.86]


See other pages where Capacitor model is mentioned: [Pg.1944]    [Pg.173]    [Pg.424]    [Pg.331]    [Pg.572]    [Pg.29]    [Pg.242]    [Pg.1200]    [Pg.361]    [Pg.11]    [Pg.634]    [Pg.110]    [Pg.138]    [Pg.143]    [Pg.66]    [Pg.71]    [Pg.72]    [Pg.74]    [Pg.75]    [Pg.120]    [Pg.246]    [Pg.643]    [Pg.4]    [Pg.49]    [Pg.58]    [Pg.87]   
See also in sourсe #XX -- [ Pg.445 ]

See also in sourсe #XX -- [ Pg.404 , Pg.406 ]




SEARCH



Capacitor, electrical model component

Capacitors

Double layer, capacitance/capacitor models

Double-layer capacitors electrical equivalent model

Electrical double layer capacitor model

Parallel-capacitor model

Parallel-plate capacitor model

Porous capacitor model

© 2024 chempedia.info