Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low-inductance traces

Physical layout of the PCB is important. The filter should be laid out in a linear fashion so that the input portion of the filter is physically distant from the output portion. Large, low-inductance traces should be also used, but keep in mind the creepage requirements of the regulatory specifications. [Pg.248]

Figure 3-11 Maximizing Efficiency of a Synchronous Boost by Means of a Schottky Diode Connected with Low-inductance Traces... Figure 3-11 Maximizing Efficiency of a Synchronous Boost by Means of a Schottky Diode Connected with Low-inductance Traces...
For minimizing noise in general, we must actually ensure that all the grounding (earthing) connections — from the PCB to the enclosure, and on to the earth wire, are good. Any intervening PCB traces should also be wide, and of low inductance. [Pg.382]

Note Copper traces can t provide a very low inductance if they are long, however wide they may be. We must remember that though halving the length of any trace does roughly halve its inductance, we have to increase the width of a trace by a factor of 8 to 10 to halve its inductance (see Chapter 6). [Pg.384]

Nickel also is deterrnined by a volumetric method employing ethylenediaminetetraacetic acid as a titrant. Inductively coupled plasma (ICP) is preferred to determine very low nickel values (see Trace AND RESIDUE ANALYSIS). The classical gravimetric method employing dimethylglyoxime to precipitate nickel as a red complex is used as a precise analytical technique (122). A colorimetric method employing dimethylglyoxime also is available. The classical method of electro deposition is a commonly employed technique to separate nickel in the presence of other metals, notably copper (qv). It is also used to estabhsh caUbration criteria for the spectrophotometric methods. X-ray diffraction often is used to identify nickel in crystalline form. [Pg.13]

Trace contaminants in the phosphoms may be deterrnined by oxidation of the phosphoms by various techniques. The metals are then deterrnined by an inductively coupled plasma spectrophotometer or by atomic absorption. The most important trace metal is arsenic, which must be reduced in concentration for food-grade products. Numerous other trace metals have become important in recent years owing to the specifications for electronic-grade phosphoric acid requited by the semiconductor industry (see Electronic materials Semiconductors). Some trace elements must be reduced to the low ppb range in phosphoric acid to comply. [Pg.352]

This explains the increase in the induction period which is apparent after exposure of the salt to ammonia, and the decrease in the induction period found for samples which contain traces of HCIO4, identified as the unstable species [59,925]. In the low temperature range, the presence of an outer layer of adsorbed NH3 and/or NH4 ions suppresses the formation of HC104 and, in consequence, the decomposition reaction. [Pg.198]

This is also true because any trace inductance here gets multiplied by the square of the turns ratio, and reflects into the primary side, as discussed previously. This greatly increases the dissipation in the primary-side RCD/zener clamp and severely degrades the converter efficiency. We have to really struggle to minimize secondary-side inductances, especially for low output voltage rails, that is, those with higher turns ratios. [Pg.149]

Winge et al. [730] have investigated the determination of twenty or more trace elements in saline waters by the inductively coupled plasma technique. They give details of experimental procedures, detection limits, and precision and accuracy data. The technique when applied directly to the sample is not sufficiently sensitive for the determination of many of the elements at the low concentrations at which they occur in seawater, and for these samples preconcentration techniques are required. However, it has the advantages of being amenable to automation and capable of analyzing several elements simultaneously. [Pg.257]

The major anions and cations in seawater have a significant influence on most analytical protocols used to determine trace metals at low concentrations, so production of reference materials in seawater is absolutely essential. The major ions interfere strongly with metal analysis using graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma mass spectroscopy (ICP-MS) and must be eliminated. Consequently, preconcentration techniques used to lower detection limits must also exclude these elements. Techniques based on solvent extraction of hydrophobic chelates and column preconcentration using Chelex 100 achieve these objectives and have been widely used with GFAAS. [Pg.50]

Nickel is normally present at very low levels in biological samples. To determine trace nickel levels in these samples accurately, sensitive and selective methods are required. Atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), with or without preconcentration or separation steps, are the most common methods. These methods have been adopted in standard procedures by EPA, NIOSH, lARC, and the International Union of Pure and Applied... [Pg.207]


See other pages where Low-inductance traces is mentioned: [Pg.57]    [Pg.123]    [Pg.42]    [Pg.108]    [Pg.594]    [Pg.197]    [Pg.370]    [Pg.399]    [Pg.42]    [Pg.108]    [Pg.1260]    [Pg.555]    [Pg.583]    [Pg.335]    [Pg.60]    [Pg.129]    [Pg.614]    [Pg.72]    [Pg.73]    [Pg.91]    [Pg.131]    [Pg.132]    [Pg.137]    [Pg.150]    [Pg.125]    [Pg.441]    [Pg.429]    [Pg.438]    [Pg.435]    [Pg.305]    [Pg.245]    [Pg.357]    [Pg.48]    [Pg.122]    [Pg.105]   


SEARCH



© 2024 chempedia.info