Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural model complexes

The goal of the experiments we report was to create new structural model complexes for gluzincins or carboxypeptidases. With [Zn (bdtbpza)Cl] (12) for the first time a tetrahedral zinc complex with a monoanionic W,W,0-tridentate using a carboxylate 0-donor was synthesized (41). A comparison of the molecular structure of 12 with the coordination environment of the enzymes indicates its significance... [Pg.123]

It is often difficult to represent inorganic compounds with the usual structure models because these structures are based on complex crystals space groups), aggregates, or metal lattices. Therefore, these compounds are represented by individual polyhedral coordination of the ligands such as the octahedron or tetrahedron Figure 2-124d). [Pg.135]

Alkyl halides are encountered less frequently than their oxygen-containing relatives alcohols and ethers, but some of the kinds of reactions they undergo—nucleophilic substitutions and eliminations—are encountered frequently. Thus, alkyl halide chemistry acts as a relatively simple model for many mechanistically similar but structurally more complex reactions found in biornolecules. We ll begin in this chapter with a look at how to name and prepare alkyl halides, and we ll see several of their reactions. Then in the following chapter, we ll make a detailed study of the substitution and elimination reactions of alkyl halides—two of the most important and well-studied reaction types in organic chemistry. [Pg.333]

This model of the electronic structure of complex ions explains why high-spin and low-spin complexes occur only with ions that have four to seven electrons (d4, d5, d6, d7). With three or fewer electrons, only one distribution is possible the same is true with eight or more electrons. [Pg.420]

The uniformity of tantalum powder is also a veiy important parameter of capacitor-grade tantalum powder. The loss of powder uniformity can initiate during the regular reduction process due to varying conditions at the beginning and end of the reduction process. At the end of the process, the concentration of tantalum in the melt is very low, while the sodium content increases. Based on the complex structure model of melts, it should be noted that the desired particle size of the powder is formed at the veiy beginning of the process, while the very fine fraction forms at the end of the process, independent of the initial content of the melt. The use of special equipment enables to perform a continuous reduction process with simultaneous loading of K TaFy and sodium, which can influence the improved uniformity of the primary powder [592,603,604],... [Pg.337]

In order to ascertain the validity of the assignments made, particularly for the more complex structures, model compounds were synthesized and used as references. [Pg.74]

Photo 14 Linus Pauling in 1950, showing his still evident enthusiasm for the structures of complex minerals (Chapters 5, 6), in this case possibly beryl. In a typical pose, he holds a specimen of the mineral and stands beside an atomic model. The enthusiasm for minerals continued even though Pauling had by this time largely moved on to studies of biological macromolecules (Part III). [Pg.453]

Shinnar, R. and Feng, C. A., Structure of complex catalytic reactions thermodynamic constraints in kinetic modeling and catalyst evaluation, I EC Fundam., 24, 153-170 (1985). [Pg.380]

Fig. 2. Metrical data for [Fe3S4] clusters taken from the high-resolution crystsd structures of D. gigas Fdll (1.7 A resolution) (19, 61, 166), A. vinelandii Fdl (1.35 A resolution) (165), Emd the model complex (Et4N)3[Fe3S4(LSs)] (50). Fig. 2. Metrical data for [Fe3S4] clusters taken from the high-resolution crystsd structures of D. gigas Fdll (1.7 A resolution) (19, 61, 166), A. vinelandii Fdl (1.35 A resolution) (165), Emd the model complex (Et4N)3[Fe3S4(LSs)] (50).
However, when the X-ray crystal structure of the MoFe protein was examined, it was clear that homocitrate could not directly hydrogen bond to the histidine, since the carboxylate group and imidazole are stacked parallel to each other in the crystal. Nevertheless, as noted in the previous section, studies on model complexes have suggested that homocitrate can become monodentate during nitrogenase turnover, with the molybdenum carboxylate bond breaking to open up a vacant site at molybdenum suitable for binding N2. [Pg.201]

This study of such of an electron transfer chain is most timely, since the 3D structures of all the components involved are known (and related components can easily be obtained by homology molecular modeling). Proposals of structural models for the complexes formed between D. gigas AOR and flavodoxin, based on the available X-ray... [Pg.409]

The final physical properties of thermoset polymers depend primarily on the network structure that is developed during cure. Development of improved thermosets has been hampered by the lack of quantitative relationships between polymer variables and final physical properties. The development of a mathematical relationship between formulation and final cure properties is a formidable task requiring detailed characterization of the polymer components, an understanding of the cure chemistry and a model of the cure kinetics, determination of cure process variables (air temperature, heat transfer etc.), a relationship between cure chemistry and network structure, and the existence of a network structure parameter that correlates with physical properties. The lack of availability of easy-to-use network structure models which are applicable to the complex crosslinking systems typical of "real-world" thermosets makes it difficult to develop such correlations. [Pg.190]

Theoretical studies aimed at rationalizing the interaction between the chiral modifier and the pyruvate have been undertaken using quantum chemistry techniques, at both ab initio and semi-empirical levels, and molecular mechanics. The studies were based on the experimental observation that the quinuclidine nitrogen is the main interaction center between cinchonidine and the reactant pyruvate. This center can either act as a nucleophile or after protonation (protic solvent) as an electrophile. In a first step, NH3 and NH4 have been used as models of this reaction center, and the optimal structures and complexation energies of the pyruvate with NH3 and NHa, respectively, were calculated [40]. The pyruvate—NHa complex was found to be much more stable (by 25 kcal/mol) due to favorable electrostatic interaction, indicating that in acidic solvents the protonated cinchonidine will interact with the pyruvate. [Pg.56]


See other pages where Structural model complexes is mentioned: [Pg.118]    [Pg.131]    [Pg.2893]    [Pg.182]    [Pg.2892]    [Pg.49]    [Pg.158]    [Pg.143]    [Pg.118]    [Pg.131]    [Pg.2893]    [Pg.182]    [Pg.2892]    [Pg.49]    [Pg.158]    [Pg.143]    [Pg.328]    [Pg.344]    [Pg.445]    [Pg.414]    [Pg.52]    [Pg.311]    [Pg.161]    [Pg.221]    [Pg.129]    [Pg.368]    [Pg.17]    [Pg.21]    [Pg.197]    [Pg.194]    [Pg.204]    [Pg.214]    [Pg.518]    [Pg.542]    [Pg.84]    [Pg.194]    [Pg.115]    [Pg.227]    [Pg.78]    [Pg.80]    [Pg.236]    [Pg.280]    [Pg.50]    [Pg.18]   
See also in sourсe #XX -- [ Pg.158 ]




SEARCH



Complex model

Complexation modeling

Complexation models

Complexity models

Individual structure-complexation property models

Ligand structures model complexes

Models complexation model

Models/modeling complex liquid structure-property relationships

Quantum Mechanical Modelling - Equilibrium Structures of Isolated Metal Complexes

Surface complexation model structure

The Structure of Surface Complexation Models

© 2024 chempedia.info