Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mitochondria synthesis

Figure 12-11. Combination of phosphate transporter ( ) with the adenine nucleotide transporter ((2)) in ATP synthesis. The H+ZP, symport shown is equivalent to the P /OH antiport shown in Figure 12-10. Four protons are taken into the mitochondrion for each ATP exported. However, one less proton would be taken in when ATP is used inside the mitochondrion. Figure 12-11. Combination of phosphate transporter ( ) with the adenine nucleotide transporter ((2)) in ATP synthesis. The H+ZP, symport shown is equivalent to the P /OH antiport shown in Figure 12-10. Four protons are taken into the mitochondrion for each ATP exported. However, one less proton would be taken in when ATP is used inside the mitochondrion.
Energy-linked transhydrogenase, a protein in the inner mitochondrial membrane, couples the passage of protons down the electrochemical gradient from outside to inside the mitochondrion with the transfer of H from intramitochondrial NADH to NADPH for intramitochondrial enzymes such as glutamate dehydrogenase and hydroxylases involved in steroid synthesis. [Pg.99]

Glycolysis, the pentose phosphate pathway, and fatty acid synthesis are all found in the cytosol. In gluconeo-genesis, substrates such as lactate and pyruvate, which are formed in the cytosol, enter the mitochondrion to yield oxaloacetate before formation of glucose. [Pg.126]

Pathways are compartmentalized within the cell. Glycolysis, glycogenesis, glycogenolysis, the pentose phosphate pathway, and fipogenesis occur in the cytosol. The mitochondrion contains the enzymes of the citric acid cycle, P-oxidation of fatty acids, and of oxidative phosphorylation. The endoplasmic reticulum also contains the enzymes for many other processes, including protein synthesis, glycerofipid formation, and dmg metabolism. [Pg.129]

Pymvate dehydrogenase is a mitochondrial enzyme, and fatty acid synthesis is a cytosohc pathway, but the mitochondrial membrane is impermeable to acetyl-CoA. Acetyl-CoA is made available in the cytosol from citrate synthesized in the mitochondrion, transported into the cytosol and cleaved in a reaction catalyzed by ATP-citrate lyase. [Pg.134]

ALASl. This repression-derepression mechanism is depicted diagrammatically in Figure 32-9. Thus, the rate of synthesis of ALASl increases greatly in the absence of heme and is diminished in its ptesence. The turnover rate of ALASl in rat liver is normally rapid (half-life about 1 hour), a common feature of an enzyme catalyzing a rate-limiting reaction. Heme also affects translation of the enzyme and its transfer from the cytosol to the mitochondrion. [Pg.272]

With the exception of the acetyl-CoA thiolase, all these enzymes are located exclusively in the peroxisomes, whereas the enzymes that are involved in lipid synthesis are found in the microsomes and the mitochondrion. [Pg.118]

Not all the cellular DNA is in the nucleus some is found in the mitochondria. In addition, mitochondria contain RNA as well as several enzymes used for protein synthesis. Interestingly, mitochond-rial RNA and DNA bear a closer resemblance to the nucleic acid of bacterial cells than they do to animal cells. For example, the rather small DNA molecule of the mitochondrion is circular and does not form nucleosomes. Its information is contained in approximately 16,500 nucleotides that func-tion in the synthesis of two ribosomal and 22 transfer RNAs (tRNAs). In addition, mitochondrial DNA codes for the synthesis of 13 proteins, all components of the respiratory chain and the oxidative phosphorylation system. Still, mitochondrial DNA does not contain sufficient information for the synthesis of all mitochondrial proteins most are coded by nuclear genes. Most mitochondrial proteins are synthesized in the cytosol from nuclear-derived messenger RNAs (mRNAs) and then transported into the mito-chondria, where they contribute to both the structural and the functional elements of this organelle. Because mitochondria are inherited cytoplasmically, an individual does not necessarily receive mitochondrial nucleic acid equally from each parent. In fact, mito-chondria are inherited maternally. [Pg.220]

Poly(3HB) is synthesized in bacteria from acetyl-CoA by a three-step reaction (Fig. 1). The first enzyme of the pathway, 3-ketothiolase, catalyzes the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA. Aceto-acetyl-CoA reductase subsequently reduces acetoacetyl-CoA to R-3-hydroxy-butyryl-CoA, which is then polymerized by the PHA synthase to produce poly(3HB). Since acetyl-CoA is present in plant cells in the cytosol, plastid, mitochondrion, and peroxisome, the synthesis of poly(3HB) in plants could, in... [Pg.208]

Mitochondrial DNA is inherited maternally. What makes mitochondrial diseases particularly interesting from a genetic point of view is that the mitochondrion has its own DNA (mtDNA) and its own transcription and translation processes. The mtDNA encodes only 13 polypeptides nuclear DNA (nDNA) controls the synthesis of 90-95% of all mitochondrial proteins. All known mito-chondrially encoded polypeptides are located in the inner mitochondrial membrane as subunits of the respiratory chain complexes (Fig. 42-3), including seven subunits of complex I the apoprotein of cytochrome b the three larger subunits of cytochrome c oxidase, also termed complex IV and two subunits of ATPase, also termed complex V. [Pg.706]

In common with cholesterol synthesis described in the next section, fatty acids are derived from glucose-derived acetyl-CoA. In the fed state when glucose is plentiful and more than sufficient acetyl-CoA is available to supply the TCA cycle, carbon atoms are transported out of the mitochondrion as citrate (Figure 6.8). Once in the cytosol, citrate lyase forms acetyl-CoA and oxaloacetate (OAA) from the citrate. The OAA cannot re-enter the mitochondrion but is converted into malate by cytosolic malate dehydrogenase (cMDH) and then back into OAA by mitochondrial MDH (mMDH) Acetyl-CoA remains in the cytosol and is available for fatty acid synthesis. [Pg.180]

Ered Sanger, a double Nobel Prize winner, sequenced the human mitochondrial genome back in 1981. This genome codes for 13 proteins and the mitochondrion possesses the genetic machinery needed to synthesize them. Thus, the mitochondria are a secondary site for protein synthesis in eukaryotic cells. It turns out that the 13 proteins coded for by the mitochondrial genome and synthesized in the mitochondria are critically important parts of the complexes of the electron transport chain, the site of ATP synthesis. The nuclear DNA codes for the remainder of the mitochondrial proteins and these are synthesized on ribosomes, and subsequently transported to the mitochondria. [Pg.183]

It is important to appreciate that this principle of coupling-in-series underlies all biochemical pathways or processes, e.g. glycolysis, generation of ATP in the mitochondrion, protein synthesis from amino acids or a signal transduction pathway. Indeed, despite the fundamental importance of signalling pathways in biochemistry, a thermodynamic analysis of such a pathway has never been done, but the principles outlined above must apply even to signalling pathways. [Pg.31]

The basic building block for fatty acid synthesis is acetyl-CoA, produced from glucose, fructose or amino acids (Figure 11.1). Acetyl-CoA formation from these precursors occurs within the mitochondrion and so, because fatty acid synthesis occurs in the cytosol, acetyl-CoA must be transported across the mitochondrial membrane. Trans-... [Pg.224]

Figure 11.3 Mechanism of transfer of acetyl-CoA out of the mitochondrion. In the mitochondrion, acetyl-CoA reacts with oxaloacetate to form citrate, which is transported across the mitochondrial inner membrane. In the cytosol, citrate is split to re-form citrate and oxaloacetate, catalysed by citrate lyase. It has been shown that inhibition of citrate lyase inhibits fatty acid synthesis. Figure 11.3 Mechanism of transfer of acetyl-CoA out of the mitochondrion. In the mitochondrion, acetyl-CoA reacts with oxaloacetate to form citrate, which is transported across the mitochondrial inner membrane. In the cytosol, citrate is split to re-form citrate and oxaloacetate, catalysed by citrate lyase. It has been shown that inhibition of citrate lyase inhibits fatty acid synthesis.
Fig. 7.3.1 The heme synthesis pathway starts in the mitochondrion. The next four steps proceed in the cytosol. Coproporphyrinogen oxidase is in the intermembrane space of the mitochondrion, and the last two enzymes reside at the mitochondral matrix side of the inner membrane. The product heme represses the first and rate-limiting enzyme -aminolevulinic acid (5-ALA) synthase at transcription, during the translation step, and by its transport into the mitochondrion... [Pg.755]

Eugene Kennedy and Albert Lehninger showed in 1948 that, in eulcaiyotes, the entire set of reactions of the citric acid cycle takes place in mitochondria. Isolated mitochondria were found to contain not only all the enzymes and coenzymes required for the citric acid cycle, but also all the enzymes and proteins necessaiy for the last stage of respiration—electron transfer and ATP synthesis by oxidative phosphoiylation. As we shall see in later chapters, mitochondria also contain the enzymes for the oxidation of fatty acids and some amino acids to acetyl-CoA, and the oxidative degradation of other amino acids to a-ketoglutarate, succinyl-CoA, or oxaloacetate. Thus, in nonphotosynthetic eulcaiyotes, the mitochondrion is the site of most energy-yielding... [Pg.606]

This three-step process for transferring fatty acids into the mitochondrion—esterification to CoA, transesterification to carnitine followed by transport, and transesterification back to CoA—links two separate pools of coenzyme A and of fatty acyl-CoA, one in the cytosol, the other in mitochondria These pools have different functions. Coenzyme A in the mitochondrial matrix is largely used in oxidative degradation of pyruvate, fatty acids, and some amino acids, whereas cytosolic coenzyme A is used in the biosynthesis of fatty acids (see Fig. 21-10). Fatty acyl-CoA in the cytosolic pool can be used for membrane lipid synthesis or can be moved into the mitochondrial matrix for oxidation and ATP production. Conversion to the carnitine ester commits the fatty acyl moiety to the oxidative fate. [Pg.636]

How Many Protons in a Mitochondrion Electron transfer translocates protons from the mitochondrial matrix to the external medium, establishing a pH gradient across the inner membrane (outside more acidic than inside). The tendency of protons to diffuse back into the matrix is the driving force for ATP synthesis by ATP synthase. During oxidative phosphorylation by a suspension of mitochondria in a medium of pH 7.4, the pH of the matrix has been measured as 7.7. [Pg.749]

One enzyme regulated by AMPK is acetyl-CoA carboxylase, which produces malonyl-CoA, the first intermediate committed to fatty acid synthesis. Malonyl-CoA is a powerful inhibitor of the enzyme carnitine acyl-transferase I, which starts the process of ]3 oxidation by transporting fatty acids into the mitochondrion (see Fig. 17-6). By phosphorylating and inactivating acetyl-CoA carboxylase, AMPK inhibits fatty acid synthesis while relieving the inhibition (by malonyl-CoA) of )3 oxidation (Fig. 23-37). [Pg.914]

Matrix of the mitochondrion This gel-like solution in the interior of mitochondria is fifty percent protein. These molecules include the enzymes responsible for the oxidation of pyruvate, amino acids, fatty acids (by p-oxidation), and those of the tricarboxylic acid (TCA) cycle. The synthesis of urea and heme occur partially in the matrix of mitochondria. In addition, the matrix contains NAD+and FAD (the oxidized forms of the two coenzymes that are required as hydrogen acceptors) and ADP and Pj, which are used to produce ATP. [Note The matrix also contains mitochondrial RNA and DNA (mtRNA and mtDNA) and mitochondrial ribosomes.]... [Pg.74]

In bacteria and green plants PEP carboxylase (Eq. 13-53), a highly regulated enzyme, is responsible for synthesizing oxaloacetate. In animal tissues pyruvate carboxylase (Eq. 14-3) plays the same role. The latter enzyme is almost inactive in the absence of the allosteric effector acetyl-CoA. For this reason, it went undetected for many years. In the presence of high concentrations of acetyl-CoA the enzyme is fully activated and provides for synthesis of a high enough concentration of oxaloacetate to permit the cycle to function. Even so, the oxaloacetate concentration in mitochondria is low, only 0.1 to 0.4 x 10-6 M (10-40 molecules per mitochondrion), and is relatively constant.65 79... [Pg.952]

Each mitochondrion contains several molecules of DNA (mtDNA), usually in a closed, circular form, as well as the ribosomes, tRNA molecules, and enzymes needed for protein synthesis.1 23 26 With rare exceptions almost all of the mitochondrial DNA in a human cell is inherited from the mother.6 263 The size of the DNA circles varies from 16-19 kb in animals27 to over 200 kb in many higher plants. Complete sequences of many mitochondrial DNAs are known.28 283 Among these are the 16,569 bp human mtDNA,29 the 16,338 bp bovine mtDNA, the 16,896 bp mtDNA of the wallaroo Macropus robustus,30 and the 17,533 bp mtDNA of the amphibian Xenopus laevis.31 32 The sea urchin Paracentotus lividus has a smaller 15,697 bp genome. However, the order of the genes in this and other invertebrate mtDNA is different from that in mammalian mitochondria.33 Protozoal mtDNAs vary in size from 5900 bp for the... [Pg.1016]

The acetyl-CoA produced in the cytosol from citrate breakdown is used in biosynthetic reactions, including the synthesis of lipids, some amino acids, cofactors, and pigments. This is the only source of acetyl-CoA in the cytosol because the acetyl-CoA produced in the mitochondrion cannot diffuse across the mitochondrial membrane. The NADPH produced indirectly in the cytosol from the citrate is also of great importance in biosynthetic reactions. [Pg.301]

Let s now consider how much free energy is released by moving protons into the mitochondrion. Is it really enough to drive the synthesis of ATP The free energy change depends both on the ratio of the proton concentrations on the two sides of the membrane and on the difference between the electric potentials on the two sides. [Pg.321]


See other pages where Mitochondria synthesis is mentioned: [Pg.1485]    [Pg.1058]    [Pg.403]    [Pg.367]    [Pg.345]    [Pg.177]    [Pg.245]    [Pg.316]    [Pg.264]    [Pg.260]    [Pg.288]    [Pg.193]    [Pg.706]    [Pg.197]    [Pg.180]    [Pg.88]    [Pg.15]    [Pg.201]    [Pg.239]    [Pg.435]    [Pg.507]    [Pg.523]    [Pg.668]    [Pg.794]    [Pg.181]    [Pg.293]    [Pg.1003]    [Pg.230]    [Pg.299]    [Pg.306]   
See also in sourсe #XX -- [ Pg.141 , Pg.144 , Pg.145 , Pg.146 ]




SEARCH



Energy-Linked Functions of Mitochondria Other Than ATP Synthesis

Mitochondria fatty acid synthesis

Mitochondria ketone body synthesis

Mitochondria protein synthesis dependence

Protein synthesis mitochondria

Synthesis by mitochondria

© 2024 chempedia.info