Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microsomal lipid peroxidation

Pederson, T.C., Buege, J.A. and Aust, S.D. (1973). Microsomal electron transport. The role of reduced nicotinamide dinucleotide phosphateliver microsomal lipid peroxidation. J. Biol. Chem. 248, 7134—7141. [Pg.123]

Castillo, T., Koop, D.R., Kamimura, S., Triadafilopoulos, G. and Tsukamoto, H. (1992). Role of cytochrome P-450 2E1 in ethanol-, carbon tetrachloride- and iron-dependent microsomal lipid peroxidation. Hepatology 16, 992-996. [Pg.162]

Battioni, )., Fontecave, M., Jaouen, M. and Mansuy, D. (1991). Vitamin E derivatives as new potent inhibitors of microsomal lipid peroxidation. Biochem. Biophys. Res. Commun. 174, 1103-1108. [Pg.274]

Thus, superoxide itself is obviously too inert to be a direct initiator of lipid peroxidation. However, it may be converted into some reactive species in superoxide-dependent oxidative processes. It has been suggested that superoxide can initiate lipid peroxidation by reducing ferric into ferrous iron, which is able to catalyze the formation of free hydroxyl radicals via the Fenton reaction. The possibility of hydroxyl-initiated lipid peroxidation was considered in earlier studies. For example, Lai and Piette [8] identified hydroxyl radicals in NADPH-dependent microsomal lipid peroxidation by EPR spectroscopy using the spin-trapping agents DMPO and phenyl-tcrt-butylnitrone. They proposed that hydroxyl radicals are generated by the Fenton reaction between ferrous ions and hydrogen peroxide formed by the dismutation of superoxide. Later on, the formation of hydroxyl radicals was shown in the oxidation of NADPH catalyzed by microsomal NADPH-cytochrome P-450 reductase [9,10]. [Pg.774]

However, subsequent studies demonstrated that the formation of hydroxyl radicals, even if it takes place during lipid peroxidation, is of no real importance. Beloqui and Cederbaum [11] have found that although the glutathione-glutathione peroxidase system suppressed hydroxyl radical generation during the oxidation of 4-methylmercapto-2-oxo-butyrate, it exhibited a much smaller effect on microsomal lipid peroxidation. Therefore, hydroxyl radical formation is apparently unimportant in this process. Other authors also pointed out at an unimportant role of hydroxyl radicals in the initiation of microsomal lipid peroxidation [12 14], For example, it has been shown that Fe(EDTA), a most efficient catalyst of hydroxyl radical formation by the Fenton reaction, inhibited microsomal and liposomal lipid peroxidation, while the weak catalysts of this reaction Fe(ADP) and Fe(ATP) enhanced it [13]. [Pg.774]

Numerous studies were dedicated to the effects of flavonoids on microsomal and mitochondrial lipid peroxidation. Kaempferol, quercetin, 7,8-dihydroxyflavone and D-catechin inhibited lipid peroxidation of light mitochondrial fraction from the rat liver initiated by the xanthine oxidase system [126]. Catechin, rutin, and naringin inhibited microsomal lipid peroxidation, xanthine oxidase activity, and DNA cleavage [127]. Myricetin inhibited ferric nitrilotriacetate-induced DNA oxidation and lipid peroxidation in primary rat hepatocyte cultures and activated DNA repair process [128]. [Pg.863]

Values (p.mol I-1) of Flavonoids and BHT for the Inhibition of NADPH-Dependent- (I) and CCI4-Dependent (II) Microsomal Lipid Peroxidation... [Pg.863]

The above findings are supported in the other studies of the inhibitory effects of flavonoids on iron-stimulated lipid peroxidation. Quercetin was found to be an inhibitor of iron-stimulated hepatic microsomal lipid peroxidation (/50 = 200 pmol I ) [134]. Flavonoids eriodictyol, luteolin, quercetin, and taxifolin inhibited ascorbate and ferrous ion-stimulated MDA formation and oxidative stress (measured by fluorescence of 2,7,-dichlorodihydro-fluorescein) in cultured retinal cells [135]. It should be mentioned that in recent work Heijnen et al. [136] revised the structure activity relationship for the protective effects of flavonoids against lipid peroxidation. [Pg.864]

In 1989, we showed [142] that the Fe2+(rutin)2 complex is a more effective inhibitor than rutin of asbestos-induced erythrocyte hemolysis and asbestos-stimulated oxygen radical production by rat peritoneal macrophages. Later on, to evaluate the mechanisms of antioxidant activities of iron rutin and copper-rutin complexes, we compared the effects of these complexes on iron-dependent liposomal and microsomal lipid peroxidation [165], It was found that the iron rutin complex was by two to three times a more efficient inhibitor of liposomal peroxidation than the copper-rutin complex, while the opposite tendency was observed in NADPH-dependent microsomal peroxidation. On the other hand, the copper rutin complex was much more effective than the iron rutin complex in the suppression of microsomal superoxide production, indicating that the copper rutin complex indeed acquired additional SOD-dismuting activity because superoxide is an initiator of NADPH-dependent... [Pg.867]

Superoxide-dismuting activity of copper rutin complex was confirmed by comparison of the inhibitory effects of this complex and rutin on superoxide production by xanthine oxidase and microsomes (measured via cytochrome c reduction and by lucigenin-amplified CL, respectively) with their effects on microsomal lipid peroxidation [166]. An excellent correlation between the inhibitory effects of both compounds on superoxide production and the formation of TBAR products was found, but at the same time the effect of copper rutin complex was five to nine times higher due to its additional superoxide dismuting capacity. [Pg.868]

Values (p.mol I-1) for Inhibitory Effects of Metal-Rutin Complexes and Rutin on Cytochrome c Reduction by Xanthine Oxidase (I), Iron-Catalyzed Microsomal Lipid Peroxidation (II), and Lucigenin-Amplified Microsomal CL (III) [167]... [Pg.868]

In 1988 Bast and Haenen [201] reported that both LA and DHLA did not affect iron-stimulated microsomal lipid peroxidation. However, Scholich et al. [202] found that DHLA inhibited NADPH-stimulated microsomal lipid peroxidation in the presence of iron-ADP complex. Inhibitory effect was observed only in the presence of a-tocopherol, suggesting that some interaction takes place between these two antioxidants. Stimulatory and inhibitory effects of DHLA have also been shown in other transition metal-stimulated lipid peroxidation systems [203,204]. Later on, the ability of DHLA (but not LA) to react with water-soluble and lipid-soluble peroxyl radicals has been proven [205], But it is possible that the double (stimulatory and inhibitory) effect of DHLA on lipid peroxidation originates from subsequent reactions of the DHLA free radical, capable of participating in new initiating processes. [Pg.874]

There are other synthetic and natural thiolic compounds possessing antioxidant activity. One such compound is tetradecylthioacetic acid (TTA), which inhibited the iron-ascorbate-induced microsomal lipid peroxidation [234]. Its Se analog exhibited even a more profound antioxidative effect. [Pg.877]

In the case of ubiquinones we have already considered the ability of quinones to react with superoxide and other free radicals. Naphthoquinones, vitamin K and its derivatives, especially menadione, are the well known producers of superoxide through redox cycling with dioxygen. However, in 1985, Canfield et al. [254] have shown that vitamin K quinone reduced the oxidation of linoleic acid while vitamin K hydroquinone stimulated lipid peroxidation. Surprisingly, later on, conflicting results were reported by Vervoort et al. [255] who found that only hydroquinones of vitamin K and its analogs inhibited microsomal lipid peroxidation. [Pg.879]

The absence of substituents with free radical scavenging properties in most of the (3-blockers makes doubtful their efficacy as powerful antioxidants. Arouma et al. [293] tested the antioxidative properties of several 3-blockers in reactions with superoxide, hydroxyl radicals, hydrogen peroxide, and hypochlorous acid. It was demonstrated that most of the compounds tested were inactive in these experiments. Nonetheless, propranolol, verapamil, and flunarizine effectively inhibited iron ascorbate-stimulated microsomal lipid peroxidation and all drugs (excluding flunarizine) were effective scavengers of hydroxyl radicals. Contrary to Janero et al. [292], these authors did not find the inhibition of xanthine oxidase by propranolol. It was concluded that 3-blockers are not the effective in vivo antioxidants. [Pg.885]

Thus, the mechanism of MT antioxidant activity might be connected with the possible antioxidant effect of zinc. Zinc is a nontransition metal and therefore, its participation in redox processes is not really expected. The simplest mechanism of zinc antioxidant activity is the competition with transition metal ions capable of initiating free radical-mediated processes. For example, it has recently been shown [342] that zinc inhibited copper- and iron-initiated liposomal peroxidation but had no effect on peroxidative processes initiated by free radicals and peroxynitrite. These findings contradict the earlier results obtained by Coassin et al. [343] who found no inhibitory effects of zinc on microsomal lipid peroxidation in contrast to the inhibitory effects of manganese and cobalt. Yeomans et al. [344] showed that the zinc-histidine complex is able to inhibit copper-induced LDL oxidation, but the antioxidant effect of this complex obviously depended on histidine and not zinc because zinc sulfate was ineffective. We proposed another mode of possible antioxidant effect of zinc [345], It has been found that Zn and Mg aspartates inhibited oxygen radical production by xanthine oxidase, NADPH oxidase, and human blood leukocytes. The antioxidant effect of these salts supposedly was a consequence of the acceleration of spontaneous superoxide dismutation due to increasing medium acidity. [Pg.891]

Spin trapping has been widely used for superoxide detection in various in vitro systems [16] this method was applied for the study of microsomal reduction of nitro compounds [17], microsomal lipid peroxidation [18], xanthine-xanthine oxidase system [19], etc. As DMPO-OOH adduct quickly decomposes yielding DMPO-OH, the latter is frequently used for the measurement of superoxide formation. (Discrimination between spin trapping of superoxide and hydroxyl radicals by DMPO can be performed by the application of hydroxyl radical scavengers, see below.) For example, Mansbach et al. [20] showed that the incubation of cultured enterocytes with menadione or nitrazepam in the presence of DMPO resulted in the formation of DMPO OH signal, which supposedly originated from the reduction of DMPO OOH adduct by glutathione peroxidase. [Pg.963]

Dawley) peroxidation at 6 hr 28% increase in microsomal lipid peroxidation at 12 hr) Endrin... [Pg.36]

A series of related benzoxathiols, represented by (53), potently inhibited the 5-LO from sonicated guinea-pig neutrophils (0.02-0.5 //M) [157] replacement of the propyl group by ethyl, butyl or phenyl maintained this potency. Inhibition of SRS-A release from antigen-stimulated guinea-pig lung tissue was also shown (2-6 //M), but suppression of rat liver microsomal lipid peroxidation suggested a relatively nonspecific antioxidant effect. [Pg.14]

Schacter, B. A., H. S. Marver, and U. A. Meyer. Hemoprotein catabolism during stimulation of microsomal lipid peroxidation. Biochim. Biophys. Acta 279 221-227, 1972. [Pg.385]

The relative importance of hepatic microsomal lipid peroxidation versus covalent binding of carbon tetrachloride-derived radicals has been the subject of considerable debate. Since cytochrome P-450 loss has been shown to be related to lipid peroxidation and to covalent binding, each in the absence of the other, both of these early consequences of carbon tetrachloride metabolism may contribute to P-450 destruction. Nevertheless, it is still not clear how these initial events are related to subsequent triglyceride accumulation, polyribosomal disaggregation, depression of protein synthesis, cell membrane breakdown and eventual death of the hepatocytes. Carbon tetrachloride... [Pg.72]

Cholbi MR, Paya M, Alearaz MJ. 1991. Inhibitory effects of phenolic compounds on CCKinduced microsomal lipid peroxidation. Research Articles 47 195-199. [Pg.154]

Taylor SL, Tappel AL. 1976. Effect of dietary antioxidants and phenobarbital pretreatment on microsomal lipid peroxidation and activation by carbon tetrachloride. J Life Sci 19 1151-1160. [Pg.186]

Antioxidant activity was also tested in a liver microsome system. In this study, mice were treated by oral intubation (2 times/wk) with 0.2 ml olive oil alone or containing CLA (0.1 ml), linoleic acid (0.1 ml), or dl-a-tocopherol (lOmg). Four weeks after the first treatment, liver microsomes were prepared and subsequently subjected to oxidative stress using a non-enzymatic iron-dependent lipid peroxidation system. Microsomal lipid peroxidation was measured as thiobarbituric acid-reactive substance (TBARS) production using malondialdehyde as the standard. It was found that pretreatment of mice with CLA or dl-a-tocopherol significantly decreased TBARS formation in mouse liver microsomes (p < 0.05) (Sword, J. T. and M. W. Pariza, University of Wisconsin, unpublished data). [Pg.269]


See other pages where Microsomal lipid peroxidation is mentioned: [Pg.122]    [Pg.157]    [Pg.709]    [Pg.767]    [Pg.775]    [Pg.776]    [Pg.780]    [Pg.863]    [Pg.868]    [Pg.868]    [Pg.873]    [Pg.873]    [Pg.873]    [Pg.890]    [Pg.896]    [Pg.54]    [Pg.97]    [Pg.158]    [Pg.67]    [Pg.165]    [Pg.313]    [Pg.450]    [Pg.454]    [Pg.710]    [Pg.768]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Enzymatic lipid peroxidation microsomes

Lipid peroxide

Lipids peroxidation

Microsomal

Microsomal microsomes

Microsomes

© 2024 chempedia.info