Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microscopy components

Combination techniques such as microscopy—ftir and pyrolysis—ir have helped solve some particularly difficult separations and complex identifications. Microscopy—ftir has been used to determine the composition of copolymer fibers (22) polyacrylonitrile, methyl acrylate, and a dye-receptive organic sulfonate trimer have been identified in acryHc fiber. Both normal and grazing angle modes can be used to identify components (23). Pyrolysis—ir has been used to study polymer decomposition (24) and to determine the degree of cross-linking of sulfonated divinylbenzene—styrene copolymer (25) and ethylene or propylene levels and ratios in ethylene—propylene copolymers (26). [Pg.148]

The filling factor is in good agreement with estimation from electron microscopy [6]. A filling factor of about 0.6 was obtained in all cases. The filling factor sensitively determines the position of the resonance at 0), which indeed shifts in frequency for different specimens. Moreover it is important to observe that / is already quite large and close to the boundary value for a percolation limit (which is -0.7 for spheres and -0.9 for cylinders). The realisation of such a limit would lead to a low frequency metallic Drude-like component in ai(to) for the composite. At present, this possibility seems to be... [Pg.102]

Although most solutions satisfy the three-component criterion they have usually been established by empirical methods and their compositions can be found by referring to tables on a recipe-book basis Many have been extensively explored by metallographers in search of improved preparation techniques, notably for electron microscopy . ... [Pg.301]

For the particle size measurements of boron and barium dichromate, components of pyrotechnic delay compns, Freeman (Ref 46) evaluated the MSA. Particle Size Analyzer versus microscopy, gravitational liq sedimentation,... [Pg.517]

If the phases present can be unambiguously identified, microscopy can be used to determine the geometry of interface initiation and advance, and to provide information about particle sizes of components of mixed reactants in a powder. Problems of interpretation arise where materials are poorly crystallized and where crystallites are small, opaque, porous or form solid solutions. With the hot-stage microscope, the progress of reactions can be followed in some instances and the occurrence of sintering and/or melting detected. [Pg.38]

A most recent commercial Nano Indenter (Nano Indenter XP (MTS, 2001)) consists of three major components [66] the indenter head, an optical/atomic force microscope, and x-y-z motorized precision table for positioning and transporting the sample between the optical microscopy and indenter (Fig. 28). The load on the indenter is generated using a voice coil in permanent magnet assembly, attached to the top of the indenter column. The displacement of the indenter is measured using a three plate capacitive displacement sensor. At the bottom of the indenter rod, a three-sided... [Pg.22]

The mechanism of formation of morphology structures in iPP-E-plastomers blends via shear-dependent mixing and demixing was investigated by optical microscopy and electron microscopy. A single-phase stmcture is formed under high shear condition in injection machine after injection, namely under zero-shear environments, spinodal decomposition proceeds and leads to the formation of a bicontinuous phase stmcture. The velocity of spinodal decomposition and the phase separation depend on the molecular stmcture of iPP and E-plastomer components. [Pg.175]

The final component of the AFM is the tip-sample approach mechanism. Bringing the probe tip and the sample within interaction range in a nondestructive manner involves mounting one surface on an approach mechanism with subangstrom sensitivity. Most approach devices normally combine some form of stepper or slider with single step sizes of the order of microns, with a piezo device providing displacements of the order of one tenth of an angstrom up to a maximum of several microns. In microscopy mode, the piezo device... [Pg.28]

Figure 37-9. The eukaryotic basal transcription complex. Formation of the basal transcription complex begins when TFIID binds to the TATA box. It directs the assembly of several other components by protein-DNA and protein-protein interactions. The entire complex spans DNA from position -30 to +30 relative to the initiation site (+1, marked by bent arrow). The atomic level, x-ray-derived structures of RNA polymerase II alone and ofTBP bound to TATA promoter DNA in the presence of either TFIIB or TFIIA have all been solved at 3 A resolution. The structure of TFIID complexes have been determined by electron microscopy at 30 A resolution. Thus, the molecular structures of the transcription machinery are beginning to be elucidated. Much of this structural information is consistent with the models presented here. Figure 37-9. The eukaryotic basal transcription complex. Formation of the basal transcription complex begins when TFIID binds to the TATA box. It directs the assembly of several other components by protein-DNA and protein-protein interactions. The entire complex spans DNA from position -30 to +30 relative to the initiation site (+1, marked by bent arrow). The atomic level, x-ray-derived structures of RNA polymerase II alone and ofTBP bound to TATA promoter DNA in the presence of either TFIIB or TFIIA have all been solved at 3 A resolution. The structure of TFIID complexes have been determined by electron microscopy at 30 A resolution. Thus, the molecular structures of the transcription machinery are beginning to be elucidated. Much of this structural information is consistent with the models presented here.
While the fluid mosaic model of membrane stmcture has stood up well to detailed scrutiny, additional features of membrane structure and function are constantly emerging. Two structures of particular current interest, located in surface membranes, are tipid rafts and caveolae. The former are dynamic areas of the exo-plasmic leaflet of the lipid bilayer enriched in cholesterol and sphingolipids they are involved in signal transduction and possibly other processes. Caveolae may derive from lipid rafts. Many if not all of them contain the protein caveolin-1, which may be involved in their formation from rafts. Caveolae are observable by electron microscopy as flask-shaped indentations of the cell membrane. Proteins detected in caveolae include various components of the signal-transduction system (eg, the insutin receptor and some G proteins), the folate receptor, and endothetial nitric oxide synthase (eNOS). Caveolae and lipid rafts are active areas of research, and ideas concerning them and their possible roles in various diseases are rapidly evolving. [Pg.422]

The major gaseous components were analyzed by a gas chromatograph equipped with a TCD and a molecular sieve 13X column. The specific surface areas of carbon produced were measured by the BET method(ASAP 2010, Micromeritics). The morphology and particle size of the formed carbon were investigated by the scanning electron microscopy(S-4200, Hitachi... [Pg.421]

HAMILTON-MILLER J M T aud SHAH s (1999) Disorganization of cell division of methicillin-resistant Staphylococcus aureus by a component of tea Camellia sinensis) a study by electron microscopy , FEMS Microbiology Letters, 176, 463-9. [Pg.152]

The performance of a supported metal or metal sulfide catalyst depends on the details of its preparation and pretreatraent. For petroleum refining applications, these catalysts are activated by reduction and/or sulfidation of an oxide precursor. The amount of the catalytic component converted to the active ase cind the dispersion of the active component are important factors in determining the catalytic performance of these materials. This investigation examines the process of reduction and sulfidation on unsupported 00 04 and silica-supported CO3O4 catalysts with different C03O4 dispersions. The C03O4 particle sizes were determined with electron microscopy. X-ray diffraction (XRD), emd... [Pg.144]

Dang, J. M. C., Braet, F., and Copeland, L. (2006). Nanostructural analysis of starch components by atomic force microscopy. /. Microsc. 224,181-186. [Pg.238]


See other pages where Microscopy components is mentioned: [Pg.1660]    [Pg.1718]    [Pg.129]    [Pg.191]    [Pg.328]    [Pg.182]    [Pg.198]    [Pg.214]    [Pg.260]    [Pg.195]    [Pg.225]    [Pg.87]    [Pg.730]    [Pg.88]    [Pg.106]    [Pg.377]    [Pg.62]    [Pg.252]    [Pg.1]    [Pg.175]    [Pg.178]    [Pg.544]    [Pg.554]    [Pg.574]    [Pg.312]    [Pg.423]    [Pg.440]    [Pg.454]    [Pg.614]    [Pg.45]    [Pg.329]    [Pg.94]    [Pg.97]    [Pg.99]    [Pg.25]   
See also in sourсe #XX -- [ Pg.236 ]

See also in sourсe #XX -- [ Pg.187 , Pg.188 ]




SEARCH



Atomic force microscopy components

Electron microscopy components

Equipment microscopy components

Thermal microscopy components

© 2024 chempedia.info