Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microporous packings

Microporous Packing—Modern, fully porous, high-resolution separations packing with average particle diameters of 3-10 jUm. [Pg.216]

Whether and how much a component in the entering reactant stream has any effects depend on its role in the reaction. In a study of ammonia decomposition in a counter-current microporous packed-bed membrane reactor, the inlet concentration of hydrogen greatly influences the decomposition rate. As expected from Figure 11.15, ammonia conversion increases as the hydrogen concentration in the feed stream decreases at a given temperature [Collins et al., 1993). On the contrary, the inlet nitrogen concentration... [Pg.509]

Microporous particles (3-10 (im) give columns that are as much as 20 times as efficient as porous layer-bead or pellicular (40 pm) packings. Whilst modem LC is based almost exclusively on microporous packing materials it is informative to relate the advances in particle design with the attempts to eliminate the deleterious effects on column performance since the latter as expressed by H is related to experimental variables, such as, the particle size (dp), the nominal stationary phase thickness (ds) and the mobile phase velocity (u). [Pg.311]

As a microporous packing of uniform pore size into which smaller molecules can diffuse rapidly, slightly larger ones more slowly or not at all, that is, size exclusion chromatography for determining molecular weight distribution of polymers. [Pg.598]

The ratio 0/0 is thus a measure of the enhancement of the energy of adsorption in a micropore as compared with that on an open surface. In curve (i) of Fig. 4.9 this ratio is plotted as a function of d/r and, as is seen, the enhancement is still appreciable when d = l-Sr, but has almost disappeared when d = 2r , i.e. when the slit is only two molecular diameters wide. Even when d/r = 1, which corresponds to a single molecule tightly packed into the width of the slit, the enhancement is only 1-6-fold. The effect... [Pg.208]

HoUow fibers are usuaUy on the order of 25 p.m to 2 mm in diameter. They can be made with a homogeneous dense stmcture, or preferably with a microporous stmcture having a dense permselective layer on the outside or inside surface. The dense surface layer can be integral, or separately coated onto a support fiber. The fibers are packed into bundles and potted into tubes to form a membrane module. More than a kilometer of fibers may be requited to... [Pg.70]

Adsorption of supercritical gases takes place predominantly in pores which are less than four or five molecular diameters in width. As the pore width increases, the forces responsible for the adsorption process decrease rapidly such that the equilibrium adsorption diminishes to that of a plane surface. Thus, any pores with widths greater than 2 nm (meso- and macropores) are not useful for enhancement of methane storage, but may be necessary for transport into and out of the adsorbent micropores. To maximize adsorption storage of methane, it is necessary to maximize the fractional volume of the micropores (<2 nm pore wall separation) per unit volume of adsorbent. Macropore volume and void volume in a storage system (adsorbent packed storage vessel) should be minimized [18, 19]. [Pg.281]

Mcntasty el al. [35] and others [13, 36] have measured methane uptakes on zeolites. These materials, such as the 4A, 5A and 13X zeolites, have methane uptakes which are lower than would be predicted using the above relationship. This suggests that either the zeolite cavity is more attractive to 77 K nitrogen than a carbon pore, or methane at 298 K, 3.4 MPa, is attracted more to a carbon pore than a zeolite. The latter proposition is supported by the modeling of Cracknel et al. [37, 38], who show that methane densities in silica cavities will be lower than for the equivalent size parallel slit shaped pore of their model carbon. Results reported by Ventura [39] for silica xerogels lead to a similar conclusion. Thus, porous silica adsorbents with equivalent nitrogen derived micropore volumes to carbons adsorb and deliver less methane. For delivery of 150 V./V a silica based adsorbent would requne a micropore volume in excess of 0.70 ml per ml of packed vessel volume. [Pg.287]

Crushing, selective particle size packing or hydraulic compaction can be used to reduce interparticle void space and increase the bulk density within the storage tank to approach the particle density of the carbon. Even with these extreme methods of packing, the fraction of the vessel which is micropore is never greater than 0.50 for any commercial carbon, considerably short of the 0.70 which is necessary for 170 V/V storage. [Pg.289]

It is a common procedure to assume certain conditions for the chromatographic system and operating conditions and, as a result, simplify equations (20) and (21). However, in many cases the assumptions can easily be over-optimistic, to say the least. It is necessary, therefore, to carefully consider the conditions that may allow such simplifying procedures and take steps to ensure that such conditions are carefully met when such expressions are used in practice. Now, the relative magnitudes of the resistance to mass transfer terms will vary with the type of columns (packed or capillary), the type of chromatography (GC or LC) and the type of particle, i.e., porous or microporous (diatomaceous support or silica gel). [Pg.278]

The alternative is hexane, which because of the explosion hazard requires a more expensive type of extractor construction. After the extraction the product is dull gray. The continuos sheet is slit to the final width according to customer requirements, searched by fully automatic detectors for any pinholes, wound into rolls of about 1 m diameter (corresponding to a length of 900-1000 m), and packed for shipping. Such a continuous production process is excellently suited for supervision by modern quality assurance systems, such as statistical process control (SPC). Figures 7-9 give a schematic picture of the production process for microporous polyethylene separators. [Pg.259]

Dasgupta and Jacobs [29] patented a concept of using a gel layer in combination with a microporous membrane. The gel layer acts as an adhesive bridge between separator and electrodes, just as in the flat pack Zn/MnC cell [30], The microporous membrane (for example, Celgard membrane) provides excellent mechanical... [Pg.557]

EC, electrode cells EC, filling chambers SP, silicon packings C, rectangular capillary M, microporous PTFE membranes E, platinum planar electrodes S, stoppers [68. ... [Pg.412]

Figure 11(A) shows a principle sketch of a SEC set-up. The eluent (solvent) is pumped at a constant flow rate through the system. A small amount of polymer solution (typically 200 pL) is injected manually or with an autosampler. The main part comprises a set of columns (typically 3-4 columns+pre-column) typically packed with microporous styrene-divinylbenzene, porous glass, or silica. In the routine analytical laboratory it is especially useful to have a pre-column in order to collect impurities that might be present in the samples. If many different samples are to be analyzed, it is necessary to check the reliability of the columns frequently to avoid artefacts due to residues from previous samples still held on the column. In order to avoid problems, samples should be purified before they... Figure 11(A) shows a principle sketch of a SEC set-up. The eluent (solvent) is pumped at a constant flow rate through the system. A small amount of polymer solution (typically 200 pL) is injected manually or with an autosampler. The main part comprises a set of columns (typically 3-4 columns+pre-column) typically packed with microporous styrene-divinylbenzene, porous glass, or silica. In the routine analytical laboratory it is especially useful to have a pre-column in order to collect impurities that might be present in the samples. If many different samples are to be analyzed, it is necessary to check the reliability of the columns frequently to avoid artefacts due to residues from previous samples still held on the column. In order to avoid problems, samples should be purified before they...

See other pages where Microporous packings is mentioned: [Pg.14]    [Pg.63]    [Pg.289]    [Pg.311]    [Pg.86]    [Pg.86]    [Pg.14]    [Pg.63]    [Pg.289]    [Pg.311]    [Pg.86]    [Pg.86]    [Pg.254]    [Pg.155]    [Pg.379]    [Pg.192]    [Pg.286]    [Pg.290]    [Pg.298]    [Pg.574]    [Pg.350]    [Pg.414]    [Pg.275]    [Pg.543]    [Pg.411]    [Pg.432]    [Pg.5]    [Pg.175]    [Pg.688]    [Pg.703]    [Pg.236]    [Pg.336]    [Pg.213]    [Pg.307]    [Pg.311]    [Pg.319]    [Pg.517]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



© 2024 chempedia.info