Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microporous carbon molecular sieves

Fig. 2. Pore size distribution of typical samples of activated carbon (small pore gas carbon and large pore decolorizing carbon) and carbon molecular sieve (CMS). A / Arrepresents the increment of specific micropore volume for an increment of pore radius. Fig. 2. Pore size distribution of typical samples of activated carbon (small pore gas carbon and large pore decolorizing carbon) and carbon molecular sieve (CMS). A / Arrepresents the increment of specific micropore volume for an increment of pore radius.
To achieve a significant adsorptive capacity an adsorbent must have a high specific area, which implies a highly porous structure with very small micropores. Such microporous solids can be produced in several different ways. Adsorbents such as silica gel and activated alumina are made by precipitation of colloidal particles, followed by dehydration. Carbon adsorbents are prepared by controlled burn-out of carbonaceous materials such as coal, lignite, and coconut shells. The crystalline adsorbents (zeolite and zeolite analogues are different in that the dimensions of the micropores are determined by the crystal structure and there is therefore virtually no distribution of micropore size. Although structurally very different from the crystalline adsorbents, carbon molecular sieves also have a very narrow distribution of pore size. The adsorptive properties depend on the pore size and the pore size distribution as well as on the nature of the solid surface. [Pg.36]

Carbon molecular sieve Microporous carbon adsorbent that has very small micropores (typically 5.0-A diameter) with a very narrow distribution of pore size. [Pg.29]

The primary requirement for an economic adsorption separation process is an adsorbent with sufficient selectivity, capacity, and life. Adsorption selectivity may depend either on a difference in adsorption equilibrium or, less commonly, on a difference in kinetics. Kinetic selectivity is generally possible only with microporous adsorbents such as zeolites or carbon molecular sieves. One can consider processes such as the separation of linear from branched hydrocarbons on a 5A zeolite sieve to be an extreme example of a kinetic separation. The critical molecular diameter of a branched or cyclic hydrocarbon is too large to allow penetration of the 5A zeolite crystal, whereas the linear species are just small enough to enter. The ratio of intracrystalline diffusivities is therefore effectively infinite, and a very clean separation is possible. [Pg.31]

In molecular sieve adsorbents, such as zeolites and carbon molecular sieves, the micropore size distribution is extremely narrow, thus allowing the possibility of kinetic separations based on differences in molecular size. However, this feature is utilized in only a few commercial adsorption separation processes, and in the majority of such processes the separation depends on differences in the adsorption equilibrium rather than on the kinetics, even though a molecular sieve adsorbent may be used. [Pg.31]

Carbon molecular sieves are produced by controlled pyrolysis and subsequent oxidation of coal, anthracite, or organic polymer materials. They differ from zeolites in that the micropores are not determined by the crystal structure and there is therefore always some distribution of micropore size. However, by careful control of the manufacturing process the micropore size distribution can be kept surprisingly narrow, so that efficient size-selective adsorption separations are possible with such adsorbents. Carbon molecular sieves also have a well-defined bi-modal (macropore-micropore) size distribution, so there are many similarities between the adsorption kinetic behavior of zeolitic and carbon molecular sieve systems. [Pg.32]

Type I isotherms are characteristic of microporous solids having relatively small external surface area (activated carbons, molecular sieve zeolites, metal organic frameworks, etc.). They are usually obtained by most gases and vapors on activated carbons. [Pg.117]

Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, and Quinn DF. Micropore size distributions of activated carbons and carbon molecular sieves assessed by high-pressure methane and carbon dioxide adsorption isotherms. J. Phys. Chem. B, 2002 106(36) 9372-9379. [Pg.159]

The reversible Type I isotherm (Type I isotherms are sometimes referred to as Langmuir isotherms, but this nomenclature is not recommended) is concave to the p/pa axis and na approaches a limiting value as p/p° — 1. Type I isotherms are given by microporous solids having relatively small external surfaces (e.g. activated carbons, molecular sieve zeolites and certain porous oxides), the limiting uptake being governed by the accessible microporc volume rather than by the internal surface area. [Pg.525]

Porous carbonaceous materials are important in many application areas because of their remarkable properties, such as high surface areas, chemical inertness, and good mechanical stability. Carbon molecular sieves that are amorphous and microporous are commercially important for the separation of nitrogen from air, and activated carbons with a wide pore size distribution are also useful adsorbents for various applications. [Pg.5670]

This work focuses on the application of water adsorption to the characterisation of narrow microporosity (uitramicroporosity) on carbon molecular sieves (CMS). In addition, the mechanism of water adsorption in carbonaceous solids is analysed. Despite of the presence of surface groups in these materials, they present low adsorption at low relative pressures (P/Po <0.2), indicating the significant role of micropore size in the starting of water adsorption. Interestingly, it has been seen that water adsorbs even on samples, which do not present CO2 adsorption. [Pg.201]

Similarly, there is a great potential in the use of water vapour for the analysis of the porous texture, because it has considerable potential due to both the easy experimental conditions (at room temperature the whole range of relative pressures can be covered) and the characteristics of the molecule itself (polar molecule and small kinetic diameter-0.28 nm). This vapour is widely used in the characterisation of inorganic porous solids, such as zeolites, silicas, and clays. However, its interaction with carbon materials (microporous carbons coals, activated carbon fibres, carbon molecular sieves and porous carbons activated carbons), is more complex than the interaction of non-polar molecules [8]. [Pg.202]

Evaluation of microporous structure of carbon molecular sieves using the pycnometric method... [Pg.225]

Two kinetic (CMS-Kl, CMS-K2) and one equilibrium (CMS-R) carbon molecular sieves, used originally for separation of gaseous mixtures, were investigated. The adsorption Nj isotherms at 77 K, in static conditions where obtained. In the case of the two first sieves the adsorption was so low that the calculation of parameters characterizing the texture was impossible. The volume of nitrogen adsorbed on the sieve CMS-R is remarkable From obtained results parameters characterizing micropore structure according to Dubinin -Radushkevich equation and Horvath - Kawazoe method were determined. [Pg.225]

The diameter and volume of the micropores were also determined by the measurement of the density using as displacement molecules with different sizes, e g., helium, water, benzene, decaline. It was found that in the case of CMS-Kl and CMS-K2 sieves, the micropores with the pore size within the range 0.255-0.528 are dominated and that the used measurements enable characterisation of the structure of carbon molecular sieves. For equilibrium sieve the analysis of the micropores volume with the use of the pycnometric technique does not give proper results. [Pg.225]

Such result is consistent with the literature [1]. In this way it was found that the measurements based on displacement of fluids with different molecular sizes enable characterization of the micropore structure of carbon molecular sieves. However for CMS- R sieves a some amount of micropores with the size of 0.255 -s- 0.528 nm was found, but its volume is smaller than in the case of CMSs-K. [Pg.229]

By using potassium as a carbon gasification catalyst, it is possible to obtain activated carbons of large adsorption capacity (large micropore volume), but with micropores of small dimensions. Nevertheless, these materials could not be converted into carbon molecular sieves by carbon deposition from benzene pyrolysis. Success was achieved with chars which were activated only to a limited extent [16]. [Pg.264]

Huang Qinglin S M Sundaram S Farooq. Revisiting transport of gases in the micropores of carbon molecular sieves. Submitted for publication. [Pg.347]

Successful separation of alkanes and alkenes has been documented when microporous membranes have been used [79,138]. The physiochemical properties, size, and shape of the molecules will play an important role for the separation, hence critical temperatures and gas molecule configurations should be carefully evaluated for the gases in mixture. On the basis of gas properties and process conditions, the separation may be performed according to selective surface flow or molecular sieving (refer to Section 4.2 on transport). The transport may also be enhanced by having a Ag compound in the membrane. The Ag ion will form a reversible complex with the alkene, and facilitated transport results. Selectivities in the range of 200-300 have been reported for separation of ethene-ethane and propene-propane [138]. Successful separation of alkanes and alkenes will be important for the petrochemical industry. Today the surplus hydrocarbons in the purge gas are usually flared. Membranes which should be suitable for this application are the carbon molecular sieves (see Section 4.3.2) and nanostructured materials (Section 4.3.3). [Pg.100]

Van Den Broeke and Krishna [56] compared the calculated and the experimental breakthrough curves of single components and of mixtures containing methane, carbon dioxide, propane, and propene on microporous activated carbon and on carbon molecular sieves. They ignored the external mass transfer kinetics and assumed that there is local equilibrium for each component between the pore surface and the stagnant fluid phase in the macropores. They also assumed that the surface-diffusion contribution is much larger than that of pore diffusion and they neglected pore diffusion. They used in their calculations three different... [Pg.765]


See other pages where Microporous carbon molecular sieves is mentioned: [Pg.290]    [Pg.290]    [Pg.251]    [Pg.252]    [Pg.259]    [Pg.95]    [Pg.112]    [Pg.35]    [Pg.44]    [Pg.119]    [Pg.225]    [Pg.251]    [Pg.252]    [Pg.259]    [Pg.193]    [Pg.193]    [Pg.225]    [Pg.261]    [Pg.1]    [Pg.80]    [Pg.299]    [Pg.303]    [Pg.324]    [Pg.653]    [Pg.623]    [Pg.650]    [Pg.3]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Carbon molecular sieves

Microporous carbons

Microporous molecular sieves

Molecular sieves

Molecular sieving

© 2024 chempedia.info