Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical activation porous carbons

Several mechanisms have been proposed to explain the activation of carbon surfaces. These have Included the removal of surface contaminants that hinder electron transfer, an Increase In surface area due to ralcro-roughenlng or bulld-up of a thin porous layer, and an Increase In the concentrations of surface functional groups that mediate electron transfer. Electrode deactivation has been correlated with an unintentional Introduction of surface contaminants (15). Improved electrode responses have been observed to follow treatments which Increase the concentration of carbon-oxygen functional groups on the surface (7-8,16). In some cases, the latter were correlated with the presence of electrochemical surface waves (16-17). However, none of the above reports discuss other possible mechanisms of activation which could be responsible for the effects observed. [Pg.583]

The purpose of this paper Is 1) to describe the electrochemistry of ferrl-/ferro-cyanlde and the oxidation of ascorbic at an activated glassy carbon electrode which Is prepared by polishing the surface with alumina and followed only by thorough sonlcatlon 2) to describe experimental criteria used to bench-mark the presence of an activated electrode surface and 3) to present a preliminary description of the mechanism of the activation. The latter results from a synergistic Interpretation of the chemical, electrochemical and surface spectroscopic probes of the activated surface. Although the porous layer may be Important, Its role will be considered elsewhere. [Pg.583]

Kierzek K., Frackowiak E., Lota G., Gryglewicz G., Machnikowski J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation Electrochim Acta 2004 49 515-23. [Pg.43]

With respect to the producing porous carbons for electrochemical capacitors the activation using potassium hydroxide represents several... [Pg.94]

Metallic NPs are most widely used in catalytic applications due to their inherent properties. Several examples of platinum and gold NPs are apparent in the literature. For example, electrodeposited platinum NPs on porous carbon substrates exhibit electrocatalytic activity for the oxidation of methanol.60 In another example, gold NPs catalyze the electrochemical oxidation of nitric oxide on modified electrodes.61 In general, catalytic NPs provide two distinct functions enhancing an electrochemical reaction and/or increasing electron transfer to an electrode. [Pg.322]

Abstract. Nanocarbon materials and method of their production, developed by TMSpetsmash Ltd. (Kyiv, Ukraine), are reviewed. Multiwall carbon nanotubes with surface area 200-500 m2/g are produced in industrial scale with use of CVD method. Ethylene is used as a source of carbon and Fe-Mo-Al- mixed oxides as catalysts. Fumed silica is used as a pseudo-liquid diluent in order to decrease aggregation of nanotubes and bulk density of the products. Porous carbon nanofibers with surface area near 300-500 m2/g are produced from acetylene with use of (Fe, Co, Sn)/C/Al203-Si02 catalysts prepared mechanochemically. High surface area microporous nanocarbon materials were prepared by activation of carbon nanofibers. Effective surface area of these nanomaterials reaches 4000-6000 m2/g (by argon desorption method). Such materials are prospective for electrochemical applications. Methods of catalysts synthesis for CVD of nanocarbon materials and mechanisms of catalytic CVD are discussed. [Pg.529]

Our experiments, as well as analysis of the proposed theoretical model for a generalized system of porous electrode "active material - carbon additive" proved that thermally exfoliated graphite (TEG) can be one of the most effective conductive additive and structural support for the different new and existing active materials. The reason for such wide application of TEG is a following unique complex of TEG properties low density, relatively high conductivity and stability to electrochemical oxidation. [Pg.836]

The properties of active carbon render it a difficult material to use as an electrode. Electrochemical processes occur more often in the inner cavities (pore structure) of active carbon particles than on their outer, planar surface. For this reason, three-dimensional electrochemical activity is observed rather than the planar responses characteristic of solid carbon electrodes. It is generally a.s.sumed that the total area of the internal structure of the porous carbon electrode is completely wetted by electrolyte, although this may not be the case with high-surface-area carbons containing micropores inaccessible to electrolyte. The main difficulty is estimating the electrochemically active part of the total surface area of the active carbon electrode material. [Pg.215]

Therefore the electrochemical response with porous electrodes prepared from powdered active carbons is much increased over that obtained when solid electrodes are used. Cyclic voltammetry used with PACE is a sensitive tool for investigating surface chemistry and solid-electrolyte solution interface phenomena. The large electrochemically active surface area enhances double layer charging currents, which tend to obscure faradic current features. For small sweep rates the CV results confirmed the presence of electroactive oxygen functional groups on the active carbon surface. With peak potentials linearly dependent on the pH of aqueous electrolyte solutions and the Nernst slope close to the theoretical value, it seems that equal numbers of electrons and protons are transferred. [Pg.215]

Note that the farther away the electric potential of the carbon surface is from the potential of zero charge point ( pzc) l e higher the disjoining pressure is. In principle, this may result in a systematic variation of the support pore size in Me/C catalysts with potential (similar to the electrocapillary curve [96,97]) and consequently the efficiency of metal particle blocking by the pore walls. Such behavior of porous carbons obviously can influence the measurements of the electrochemically active surface area and might be one of the reasons for the observed correlation between the apparent dispersion of Pt/C catalysts, measured by cyclic voltammetry, and pHpzc of the supports [95], whereas no noticeable difference in the particle size has been observed with HRTEM. Undoubtedly, this problem needs further investigation. [Pg.444]

The capacitance of an EDLC depends on the surface area of the electrode materials. Therefore, activated carbons are necessary materials for EDLC electrodes because of their large surface area, highly porous structure, good adsorption properties, and high electrical conductivity. The electrochemical performance of EDLCs is related to the surface area, the pore structure, and the surface chemistry of the porous carbon. Various types of porous carbon have been widely studied for use as electrode materials for EDLCs. [Pg.112]


See other pages where Electrochemical activation porous carbons is mentioned: [Pg.242]    [Pg.243]    [Pg.118]    [Pg.268]    [Pg.215]    [Pg.379]    [Pg.6]    [Pg.816]    [Pg.314]    [Pg.78]    [Pg.78]    [Pg.97]    [Pg.48]    [Pg.155]    [Pg.371]    [Pg.97]    [Pg.552]    [Pg.254]    [Pg.143]    [Pg.19]    [Pg.816]    [Pg.112]    [Pg.338]    [Pg.245]    [Pg.314]    [Pg.255]   
See also in sourсe #XX -- [ Pg.181 ]

See also in sourсe #XX -- [ Pg.181 ]

See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Carbon electrochemical activity

Carbon porous

Carbon porous carbons

Electrochemical activity

Electrochemical carbon

Electrochemically activated

Electrochemically active

Porous carbon activation

© 2024 chempedia.info