Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micropore, definition

Adsorbents such as some silica gels and types of carbons and zeolites have pores of the order of molecular dimensions, that is, from several up to 10-15 A in diameter. Adsorption in such pores is not readily treated as a capillary condensation phenomenon—in fact, there is typically no hysteresis loop. What happens physically is that as multilayer adsorption develops, the pore becomes filled by a meeting of the adsorbed films from opposing walls. Pores showing this type of adsorption behavior have come to be called micropores—a conventional definition is that micropore diameters are of width not exceeding 20 A (larger pores are called mesopores), see Ref. 221a. [Pg.669]

The traditional definition of a zeolite refers to microporous, crystalline, hydrated aluminosilicates with a tliree-dimensional framework consisting of comer-linked SiO or AlO tetrahedra, although today the definition is used in a much broader sense, comprising microporous crystalline solids containing a variety of elements as tetrahedral building units. The aluminosilicate-based zeolites are represented by the empirical fonmila... [Pg.2777]

As surface area and pore structure are properties of key importance for any catalyst or support material, we will first describe how these properties can be measured. First, it is useful to draw a clear borderline between roughness and porosity. If most features on a surface are deeper than they are wide, then we call the surface porous (Fig. 5.16). Although it is convenient to think about pores in terms of hollow cylinders, one should realize that pores may have all kinds of shapes. The pore system of zeolites consists of microporous channels and cages, whereas the pores of a silica gel support are formed by the interstices between spheres. Alumina and carbon black, on the other hand, have platelet structures, resulting in slit-shaped pores. All support materials may contain micro, meso and macropores (see text box for definitions). [Pg.182]

On the other hand, as shown in Figure 4, the isotherm of Cs2.2 (72 m g"l) was of Type I [27], where most of the adsorption took place at the very low pressure region, indicating that these salts have only micropores (according to the lUPAC definition, the pore diameter is less than 20 A) [28]. Cs2.1 also gave the Type I... [Pg.586]

According to their diameter, pores are conventionally classified as macropores (J>50nm), mesopores (2< J<50nm) and micropores (J<2nm). For nanometer-sized pores the term nanopores has been also used for some time (Handbook of Porous Solids, F. Schiith, K. Sing, J. Weitkamp (eds.), Wiley-VCH, Berlin, 2002) but the definition of nanopores is not fully established. In this chapter the term nanopore will be used for pores with 1 < J < 10 nm. [Pg.202]

The terminology is not yet homogeneous. The use of the prefix nano spread out in the 1990s. Until then, the common term used to be mesoscopic structures, which continues to be used. According to a definition by IUPAC of 1985, the following classification applies to porous materials microporous, < 2 nm pore diameter mesoporous, 2-50 nm macroporous, > 50 nm. [Pg.241]

The N-doped carbons with a nanotube backbone combine a moderate presence of micropores with the extraordinary effect of nitrogen that gives pseudocapacitance phenomena. The capacitance of the PAN/CNts composite (ca. 100 F/g) definitively exceeds the capacitance of the single components (5-20 F/g). The nitrogen functionalities, with electron donor properties, incorporated into the graphene rings have a great importance in the exceptional capacitance behavior. [Pg.42]

Fig. 7. Size scale associated with soil mineral particles, organic components, pores and aggregations of mineral and organic components (Baldock 2002). The definitions of pore size have used those developed by IUPAC (micropores < 2 nm, mesopores 2-50 nm and macropores > 50 nm). Alternatively, the pore sizes corresponding to the lower ( /m = - 1500 kPa) and upper ( /m = - 100 kPa) limits of water availability to plants may be used to define the boundaries between the different classes of pore size. /m is soil water metric potential. Fig. 7. Size scale associated with soil mineral particles, organic components, pores and aggregations of mineral and organic components (Baldock 2002). The definitions of pore size have used those developed by IUPAC (micropores < 2 nm, mesopores 2-50 nm and macropores > 50 nm). Alternatively, the pore sizes corresponding to the lower ( /m = - 1500 kPa) and upper ( /m = - 100 kPa) limits of water availability to plants may be used to define the boundaries between the different classes of pore size. /m is soil water metric potential.
Pores are found in many solids and the term porosity is often used quite arbitrarily to describe many different properties of such materials. Occasionally, it is used to indicate the mere presence of pores in a material, sometimes as a measure for the size of the pores, and often as a measure for the amount of pores present in a material. The latter is closest to its physical definition. The porosity of a material is defined as the ratio between the pore volume of a particle and its total volume (pore volume + volume of solid) [1]. A certain porosity is a common feature of most heterogeneous catalysts. The pores are either formed by voids between small aggregated particles (textural porosity) or they are intrinsic structural features of the materials (structural porosity). According to the IUPAC notation, porous materials are classified with respect to their sizes into three groups microporous, mesoporous, and macroporous materials [2], Microporous materials have pores with diameters < 2 nm, mesoporous materials have pore diameters between 2 and 50 nm, and macroporous materials have pore diameters > 50 nm. Nowadays, some authors use the term nanoporosity which, however, has no clear definition but is typically used in combination with nanotechnology and nanochemistry for materials with pore sizes in the nanometer range, i.e., 0.1 to 100 nm. Nanoporous could thus mean everything from microporous to macroporous. [Pg.96]

Fig. 1.18A shows the pore size distribution for nonporous methacrylate based polymer beads with a mean particle size of about 250 pm [100]. The black hne indicates the vast range of mercury intrusion, starting at 40 pm because interparticle spaces are filled, and down to 0.003 pm at highest pressure. Apparent porosity is revealed below a pore size of 0.1 pm, although the dashed hne derived from nitrogen adsorption shows no porosity at aU. The presence or absence of meso- and micropores is definitely being indicated in the nitrogen sorption experiment. [Pg.27]

Al substitution (0.09-0.16 mol mol ) had no definite effect on the photochemical dissolution of substituted goethite in oxalate at pH 2.6 (Cornell Schindler, 1987). On the other hand, Al substitution depressed the initial (linear) stage of dissolution of synthetic goethites and hematites in mixed dithionite/citrate/bicarbonate solutions (Fig. 12.22) (Torrent et al., 1987). As the variation in initial surface area has already been accounted for, the scatter of data in this figure is presumably due to variations in other crystal properties such as disorder and micropores. Norrish and Taylor (1961) noted that as Al substitution in soil goethites increased, the rate of reductive dissolution dropped (see also Jeanroy et al., 1991). [Pg.330]

Relatively straightforward is the definition of nanoscopic voids. Nanopores and nanocavities are elongated voids or voids of any shape, and nanomaterials can incorporate especially nanopores in an ordered or disordered way. The former is of crucial importance for many of the hybrid materials discussed in the book (e.g., in Chapters 16 or 18). Nanochannel is also frequently used instead of nanopore, often in biological or biochemical contexts. Besides nanoporous, the term mesoporous is often found in hybrid materials research. Interestingly, the IUPAC has defined the terms mesoporous (pores with diameters between 2 and 50 nm), microporous (pores with diameters <2 nm) and macroporous (pores with diameters >50 nm), yet has not given a definition of nanoporous in the IUPAC Recommendations on the Nomenclature of Structural and Compositional Characteristics of Ordered Microporous and... [Pg.7]

Silica is one of the most abundant chemical substances on earth. It can be both crystalline or amorphous. The crystalline forms of silica are quartz, cristobalite, and tridymite [51,52]. The amorphous forms, which are normally porous [149] are precipitated silica, silica gel, colloidal silica sols, and pyrogenic silica [150-156], According to the definition of the International Union of Pure and Applied Chemistry (IUPAC), porous materials can be classified as follows microporous materials are those with pore diameters from 3 to 20 A mesoporous materials are those that have pore diameters between 20 and 500 A and macroporous materials are those with pores bigger than 500 A [149],... [Pg.84]

The definition of a more efficient enzymatic system could be based on the separation of the catalytic cycle of the enzyme and the degradation step by the Mn3+ reactive species in MnP systems. The Mn3+-chelates present several advantages in their use as oxidants. They are more tolerant to protein denaturing conditions such as extremes of temperature, pH, oxidants, organic solvents, detergents, and proteases, and they are smaller than proteins therefore, they can penetrate microporous barriers inaccessible to proteins. The optimization of the production of the Mn3+-chelate will have to be compatible with the minimal consumption and deactivation of the enzyme. [Pg.275]

The definitions of the moments and their relationship to the system parameters for a biporous (macropore-micropore) adsorbent such as a commercial pelleted molecular sieve are given by the following equations(15,16) ... [Pg.348]

Chemically bound water is most reasonably defined as including that present in interlayer spaces, or more firmly bound, but not that present in pores larger than interlayer spaces. As will be seen in Chapter 8, the distinction between interlayer space and micropores is not sharp water adsorbed on surfaces of pores further blurs the definition. From the experimental standpoint, the determination is complicated by the fact that the amount of water retained at a given RH depends on the previous drying history of the sample and on the rate at which water is removed. An approximate estimate is obtained by equilibrating a sample, not previously dried below saturation, with an atmosphere of 11% RH (F12,F13,F14). Saturated aqueous LiCl HjO gives the required RH (partial pressure of water vapour = 2,7 torr at 25°C). To achieve apparent equilibrium in a reasonable time (several days), the sample must be crushed and the system evacuated the salt solution should be stirred, at least intermittently. Young and Hansen (Y5) found the composition of the C-S-H in C3S paste thus... [Pg.130]

The International Union of Pure and Applied Chemistry has adopted the following definitions of pores by width micropores, < 2nm mesopores, 2-50 nm macropores. > 50 nm. [Pg.253]


See other pages where Micropore, definition is mentioned: [Pg.286]    [Pg.290]    [Pg.957]    [Pg.42]    [Pg.311]    [Pg.27]    [Pg.155]    [Pg.155]    [Pg.297]    [Pg.381]    [Pg.315]    [Pg.38]    [Pg.48]    [Pg.151]    [Pg.71]    [Pg.609]    [Pg.47]    [Pg.32]    [Pg.290]    [Pg.21]    [Pg.58]    [Pg.78]    [Pg.286]    [Pg.4539]    [Pg.5080]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Micropores, definition

Micropores, definition

Micropores: definition effects

Microporous framework solids definitions

Microporous materials, IUPAC definition

© 2024 chempedia.info