Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micromeritics

Talc producers most commonly use screens for particle size analysis of coarser products (+325 mesh (ca 44 -lm)) and the Micromeritics (Georgia)... [Pg.302]

ITie BET method is the most widely used procedure for determining the surface area of porous materials. In this chapter, BET results were obtained from single point measurements using a Micromeritics Flowsorb II 2300 surface area analyzer. A mixture of nitrogen in helium (30 70 mole percentage) was used. Although this simple method is not quantitative for the microporous materials studied in section 5, it still allows qualitative comparisons to be made. [Pg.350]

A stainless steel column (4.6 mm internal diameter by 250 mm length) packed with 7 micron Zorbax ODS (Dupont) was equilibrated with 82 % Acetonitrile in water at a flow rate of 2.0 ml/min. provided by a Spectra Physics Model 87(X) pump and controller. The effluent was monitored at 230 nm using either a Tracor UV-Visible detector Model 970A or a Jasco Uvidec UV detector Model 1(X)-V. Peaks were recorded and calculated on a SpectraPhysics recording integrator. Model 4200 or Model 4270. Samples of 0.5 mg/ml in toluene were applied to the column automatically with a Micromeritics Autosampler Model 725 equipped with a 10 pi loop. [Pg.400]

The first ternary metal oxide catalyst of Ca0-Mn0/Ce02 was prepared by simultaneous impregnation method, while the second ternary metal oxide of Ca0/Mn0-Ce02 catalyst was prepared by combination of co-precipitation and impregnation method. The catalysts composition used in this paper were based on multi-responses optimization result [3]. H2-TPR was carried out using Micromeritics 2900 TPD/TPR equipped by TCD. A catalyst amount of... [Pg.213]

Hydrogen chemisorption Static H2 chemisorption at 100°C on the reduced cobalt catalysts was used to determine the number of reduced surface cobalt metal atoms. This is related to the overall activity of the catalysts during CO hydrogenation. Gas volumetric chemisorption at 100°C was performed using the method described by Reuel and Bartholomew [6]. The experiment was performed in a Micromeritics ASAP 2010 using ASAP 2010C V3.00 software. [Pg.286]

The major gaseous components were analyzed by a gas chromatograph equipped with a TCD and a molecular sieve 13X column. The specific surface areas of carbon produced were measured by the BET method(ASAP 2010, Micromeritics). The morphology and particle size of the formed carbon were investigated by the scanning electron microscopy(S-4200, Hitachi... [Pg.421]

Physical properties of the prepared catalysts were measured by an adsorption analyzer [Quantachrome Co., Autosorb-lC]. The structure of prepared catalysts were investigated by XRD [Simmazdu Co., XRD-6000] with a Cu-Ka radiation source (X = 1.54056 A), voltage of 40.0 kV, ciurent of 30.0 mA and scan speed of 5.0 deg/min. Also, temperature-programmed reduction (TPR) profiles of the samples were investigated by a sorption analyzer [Micromeritics Co., Autochem II] and obtained by heating the samples from room temperature to 1100°C at a rate of lOTl/min in a 5 % H2/Ar gas flow (50 ml/min). [Pg.614]

SEM and" SEM-EDX analyses have been used in order to observe how and where the new material forms on the alumina support. XRD and MASNMR studies have been performed for its identification. Porous characteristics of the composite material have been explored using N2 adsorption-desorption experiments (Micromeritics ASAP 2000M)... [Pg.128]

Surface areas were determined from the adsorption isotherms of nitrogen at 77 K, using a Micromeritics ASAP 200 instrument. Powder X-ray diffraction patterns were obtained with a CGR theta 60 instrument using CuKa monochromated radiation. Reducibility and the amount of Cu species were determined by temperature programmed reduction (TPR) with H2 (H2/Ar 3/97, vol/vol). The experimental set up has been described previously [6]. [Pg.622]

For the chemisorption experiments a weighed catalyst sample (wet) was put in a cell and mounted on the Micromeritics 2010 (static) chemisorption instmment. The sample was heated under vacuum to 150°C where it was exposed to hydrogen (0.7 atm) for 0.5 hour. The sample was then evacuated at room temperature, reexposed to hydrogen for 0.5 hour, then evacuated, and cooled to 30°C under vacuum. [Pg.137]

Figure 4.9 Up-fill slurry packing apparatus. (Reproduced with perslssion from Micromeritics Instruments Coirp.)... Figure 4.9 Up-fill slurry packing apparatus. (Reproduced with perslssion from Micromeritics Instruments Coirp.)...
The reference Pt-Ba/y-Al203 (1/20/100 w/w) catalyst shows surface area values in the range 140-160 m2/g, a pore volume of 0.7-0.8cc/g and an average pore radius close to 100 A (measured by N2 adsorption-desorption at 77 K by using a Micromeritics TriStar 3000 instrument). Slight differences in the characterization data are associated to various batches of the ternary catalyst [24,25],... [Pg.178]

Some properties of the rock used in this study were measured The cation exchange capacity (cec) was determined by the barium sulfate method as described by Mortland and Mellor (33). Surface area was measured by using a Digisorb Meter (Micromeritics Instrument Corporation) through nitrogen adsorption. Estimation of mineral composition and indentification of the rock were performed by X-ray diffraction. [Pg.597]

Ozyazici, M., Sevgi, F. and Ertan, G. (1996) Micromeritic studies on nicardipine hydrochloride microcapsules. International Journal of Pharmaceutics, 138, 25-35. [Pg.173]

Grinding was performed using Retsch ball-mill. Particle size distribution was measured using Malvern (Mastersizer) laser particle sizer. BET surface area measurements were carried out using ASAP (Micromeritics) surface area analyzer. [Pg.208]

Micromeritics Elexience - Quantachrome Shell Bruker Exxon Mobil Zeolyst IFP... [Pg.4]

Specific surface area (SSA), total pore volume and average pore diameter were measured by N2 adsorption-desorption isotherms at 77K using Micromeritics ASAP 2020. The pore size was calculated on the adsorption branch of the isotherms using Barrett-Joyner-Helenda (BJH) method and the SSA was calculated using the Brunauer-Emmett-Teller (BET) method. [Pg.13]

N2-BET analysis and porosity measurements were done on a Micrometries ASAP 2000 apparatus at liquid nitrogen temperature. Temperature-programmed desorption of ammonia (NH3-TPD) and temperature-programmed reduction by H2 (H2-TPR) were performed with a Micromeritics AutoChem 2910 apparatus. [Pg.130]

Physical adsorption of nitrogen was carried out on an ASAP 2400 Micromeritics apparatus. Before measurements, samples were evacuated overnight at 350 °C at vacuum of 2 Pa. For all samples the same adsorption data table was used. Collected adsorption data were treated by BET-isotherm in the range 0.05 < P/micropore volume and mesopore + external surface, t-plot method, with master isotherm of nonporous alumina (Harkins-Jura) was used, t-plot was linearized in the range of 0.35 < t < 0.6 nm. [Pg.230]

The chemical composition of the samples was determined using an inductively Coupled plasma atomic emission spectrometer (ICP-AES) JY 38 from Jobin Yvon. Specific surface area values were determined by BET method using a Micromeritics Instrument Corp. FlowSorb 2300. The basicity of the materials was studied by temperature programmed desorption (TPD) of C02 used as a probe molecule. The equipment was described in a previous work [7]. FTIR spectra of pellets pressed at 2.5xl08 Pa were recorded with a Vector 22 spectrometer from Brucker. The samples were diluted with KBr (lOOmg KBr - 1.5mg of the sample). [Pg.298]

The chemical compositions of the samples were obtained by ICP in a Varian 715-ES ICP-Optical Emission Spectrometer. Powder X-ray diffraction was performed in a Philips X pert diffractometer using monochromatized CuKa. The crystallinity of the zeolites was obtained from the intensity of the most intense reflection at 23° 20 considering the parent HZ5 sample as 100% crystalline. Textural properties were obtained by nitrogen physisorption at -196°C in a Micromeritics ASAP 2000 equipment. Surface areas were calculated by the B.E.T. approach and the micropore volumes were derived from the corresponding /-plots. Prior to the adsorption measurements the samples were degassed at 400°C and vacuum overnight. [Pg.322]

The density of Bronstcd and Lewis acid sites was determined by IR spectroscopy (Nicolet 710) of adsorbed pyridine, after desorption at 250°C, using the molar extinction coefficients previously obtained by Emeis [11]. The acid strength distribution of selected zeolites was studied by NH3-TPD in an Autochem 2910 Equipment (Micromeritics) coupled to a quadrupole mass spectrometer. First, NH3 was adsorbed at 175°C until saturation and then desorbed by increasing the temperature up to 800°C at a heating rate of 10°C/min. [Pg.322]

Nitrogen adsorption was performed at -196 °C in a Micromeritics ASAP 2010 volumetric instrument. The samples were outgassed at 80 °C prior to the adsorption measurement until a 3.10 3 Torr static vacuum was reached. The surface area was calculated by the Brunauer-Emmett-Teller (BET) method. Micropore volume and external surface area were evaluated by the alpha-S method using a standard isotherm measured on Aerosil 200 fumed silica [8]. Powder X-ray diffraction (XRD) patterns of samples dried at 80 °C were collected at room temperature on a Broker AXS D-8 diffractometer with Cu Ka radiation. Thermogravimetric analysis was carried out in air flow with heating rate 10 °C min"1 up to 900 °C in a Netzsch TG 209 C thermal balance. SEM micrographs were recorded on a Hitachi S4500 microscope. [Pg.390]


See other pages where Micromeritics is mentioned: [Pg.40]    [Pg.304]    [Pg.214]    [Pg.265]    [Pg.461]    [Pg.746]    [Pg.786]    [Pg.554]    [Pg.582]    [Pg.93]    [Pg.118]    [Pg.346]    [Pg.191]    [Pg.245]    [Pg.271]    [Pg.355]    [Pg.542]    [Pg.83]    [Pg.173]    [Pg.250]    [Pg.174]    [Pg.202]    [Pg.338]    [Pg.346]    [Pg.414]    [Pg.3]    [Pg.85]   
See also in sourсe #XX -- [ Pg.18 , Pg.253 ]




SEARCH



MICROMERITICS equations

MICROMERITICS relative

Micromeritic measurements

Volumetric adsorption system micromeritics ASAP

© 2024 chempedia.info