Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelles electron transfer

He, Z. F. and L. D. Kispert. 1999. Electrochemical and optical study of carotenoids in TX-100 micelles Electron transfer and a large blue shift. J. Phys. Chem. B 103 9038-9043. [Pg.155]

Supramolecular organic and inorganic photochemistry radical pair recombination in micelles, electron transfer on starburst dendrimers, and the use of DNA as a molecular wire [N. J. Turro, Pure Appl. Chem. 1995, 67(1), 199-208]. [Pg.251]

Comparisons of electrochemical values of surfactants 1 and 2 in microemulsions and micellar solutions helped establish qualitative pictures of dynamics at relevant electrode-fluid interfaces. Rate constants for oxidations of ferrocene (Fc) 2-Fc (1) and 5-Fc (2) were similar in homogeneous DMF and DM SO on Pt and glassy carbon electrodes [32, 33]. However, in aqueous CTAB micelles, electron transfer rates were in the order Fc > 2-Fc > 5-Fc, with tenfold differences in successive values. This was attributed to 2-Fc and 5-Fc achieving head down orientations on the electrode prior to electron transfer. Adsorbed CTA+ on the electrode seems to help order 1 and 2 on the electrode prior to electron transfer. [Pg.962]

Much use has been made of micellar systems in the study of photophysical processes, such as in excited-state quenching by energy transfer or electron transfer (see Refs. 214-218 for examples). In the latter case, ions are involved, and their selective exclusion from the Stem and electrical double layer of charged micelles (see Ref. 219) can have dramatic effects, and ones of potential imfKntance in solar energy conversion systems. [Pg.484]

Utilizing FT-EPR teclmiques, van Willigen and co-workers have studied the photoinduced electron transfer from zinc tetrakis(4-sulfonatophenyl)porphyrin (ZnTPPS) to duroquinone (DQ) to fonn ZnTPPS and DQ in different micellar solutions [34, 63]. Spin-correlated radical pairs [ZnTPPS. . . DQ ] are fomied initially, and the SCRP lifetime depends upon the solution enviromnent. The ZnTPPS is not observed due to its short T2 relaxation time, but the spectra of DQ allow for the detemiination of the location and stability of reactant and product species in the various micellar solutions. While DQ is always located within the micelle, tire... [Pg.1614]

Figrue BE 16.20 shows spectra of DQ m a solution of TXlOO, a neutral surfactant, as a function of delay time. The spectra are qualitatively similar to those obtained in ethanol solution. At early delay times, the polarization is largely TM while RPM increases at later delay times. The early TM indicates that the reaction involves ZnTPPS triplets while the A/E RPM at later delay times is produced by triplet excited-state electron transfer. Calculation of relaxation times from spectral data indicates that in this case the ZnTPPS porphyrin molecules are in the micelle, although some may also be in the hydrophobic mantle of the micelle. Furtlier,... [Pg.1614]

Retardation of back ET was also observed with phenanthrene solubilized in the SDS micelle (kb = 6.8 x 107 M-1 s-1) (see Fig. 13) [75]. However, as can be seen from Fig. 13, the transient yield of SPV- for the micellar system is extremely low, presumably because only a small fraction of SPV- can escape from the geminate ion pair. This finding implies that SPV preferably resides inside the micelle and that the electron transfer mainly takes place in the micelle, not across the charged surface. [Pg.77]

The sequential electron-proton-electron transfer mechanism is in agreement with the experimental observation by Ohno et al. [141]. The mechanism was confirmed by Selvaraju and Ramamurthy [142] from photophysical and photochemical study of a NADH model compound, 1,8-acridinedione dyes in micelles. [Pg.51]

Photoinduced ET at liquid-liquid interfaces has been widely recognized as a model system for natural photosynthesis and heterogeneous photocatalysis [114-119]. One of the key aspects of photochemical reactions in these systems is that the efficiency of product separation can be enhanced by differences in solvation energy, diminishing the probability of a back electron-transfer process (see Fig. 11). For instance, Brugger and Gratzel reported that the efficiency of the photoreduction of the amphiphilic methyl viologen by Ru(bpy)3+ is effectively enhanced in the presence of cationic micelles formed by cetyltrimethylammonium chloride [120]. Flash photolysis studies indicated that while the kinetics of the photoinduced reaction,... [Pg.211]

They found almost complete quenching of the emission from the ruthenium complex and in addition the covalently linked compound considerably enhanced electron transfer to relay systems of aligned viologen units on micelles and polymers. [Pg.16]

In abroad sense, the model developed for the cobaloxime(II)-catalyzed reactions seems to be valid also for the autoxidation of the alkyl mercaptan to disulfides in the presence of cobalt(II) phthalocyanine tetra-sodium sulfonate in reverse micelles (142). It was assumed that the rate-determining electron transfer within the catalyst-substrate-dioxygen complex leads to the formation of the final products via the RS and O - radicals. The yield of the disulfide product was higher in water-oil microemulsions prepared from a cationic surfactant than in the presence of an anionic surfactant. This difference is probably due to the stabilization of the monomeric form of the catalyst in the former environment. [Pg.444]

Photo-induced electron transfer from ferrocene, Fe1, to CCl has been observed in micelle solution at low concentrations... [Pg.337]

Last time, electron-transfer reactions were frequently performed in micellar media. Analyzing temperature effects on electron transfer from aromatic amines to coumarins in aqueous Trilon X-100 micelles, Kumbhakar et al. (2006) deduced that the two-dimensional electron-transfer (2DET) model is more suitable to explain the results obtained than the conventional electron-transfer theories. The model is detailed in the article by Kumbhakar et al. (2006) and references therein. [Pg.302]

Rubredoxin is an electron-transfer protein with an Fe(IlI)/Fe(lI) redox couple at -0.31 V (SCE) in water (20). Our peptide model, [Fe( Cys-Pro-Leu-Cys-OMe)2] (Z = benzyloxycarbonyl) (21) exhibits its Fe(lll)/Fe(ll) redox couple at -0.50 V (SCE) in Mc2SO (9). This is similar to the value observed for the native protein when the difference of the solvent is taken into account. When the model complex is solubilized in water by formation of micelles with addition of the non-ionic detergent, Triton X-KX), we also observed a quasi-reversible redox couple at -0.37 V (SCE) (5). The Fe(lll) complexes of Cys-X-Y-Cys peptides also exhibit a characteristic MCD band at 350 nm due to ligand-to-metal charge transfer which has also been found in oxidized rubredoxin (4). [Pg.294]

Advances in the chemistry of [M(CN)5L]" complexes, for M = Fe, Ru, and Os, have been reviewed.There has been rather little activity in the preparation of novel complexes, but considerable activity in studying the properties, especially solvatochromism and various aspects of kinetics of substitution, of known complexes. However there has been an attempted preparation of [Fe(CN)5(Ci2H25NH2)], in the hope of generating micelles or lyotropic liquid crystals. This preparation appeared to yield [Fe(CN)4(H20)(Ci2H25NH2)], whose alkali metal salts gave a hexagonal mesophase in water, but were also readily hydrolyzed to [Fe(CN)4(H20)2] . Heterobinuclear complexes of the form [(NC)5FeL ML 5] " " have been much studied, especially in relation to intramolecular electron transfer (see Section 5.4.2.2.5). [Pg.425]

The photo-reduction of 2,l,3-benzothiadiazole-4,7-dicarbonitrile (13) by EDTA in the presence of micelles gave a stable radical anion which could be observed by ESR <84CC1324>. The observed 17 line ESR signal was attributed to an overlapping quintet of quintets from a radical with (NA) = 0.255 mT and fl(NB) = 0.075 mT. The radical appears to be protected within the micelle when electron transfer is inhibited. [Pg.360]

Similarly, this amphiphilic polymer micelle was also used to dismpt the complex between cytochrome c (Cc) and cytochrome c peroxidase (CcP Sandanaraj, Bayraktar et al. 2007). In this case, we found that the polymer modulates the redox properties of the protein upon binding. The polymer binding exposes the heme cofactor of the protein, which is buried in the protein and alters the coordination environment of the metal. The exposure of heme was confirmed by UV-vis, CD spectroscopy, fluorescence spectroscopy, and electrochemical kinetic smdies. The rate constant of electron transfer (fc°) increased by 3 orders of magnimde for the protein-polymer complex compared to protein alone. To establish that the polymer micelle is capable of disrupting the Cc-CcP complex, the polymer micelle was added to the preformed Cc-CcP complex. The observed for this complex was the same as that of the Cc-polymer complex, which confirms that the polymer micelle is indeed capable of disrupting the Cc-CcP complex. [Pg.26]

Photoinduced electron transfer from eosin and ethyl eosin to Fe(CN)g in AOT/heptane-RMs was studied and the Hfe time of the redox products in reverse micellar system was found to increase by about 300-fold compared to conventional photosystem [335]. The authors have presented a kinetic model for overall photochemical process. Kang et al. [336] reported photoinduced electron transfer from (alkoxyphenyl) triphenylporphyrines to water pool in RMs. Sarkar et al. [337] demonstrated the intramolecular excited state proton transfer and dual luminescence behavior of 3-hydroxyflavone in RMs. In combination with chemiluminescence, RMs were employed to determine gold in aqueous solutions of industrial samples containing silver alloy [338, 339]. Xie et al. [340] studied the a-naphthyl acetic acid sensitized room temperature phosphorescence of biacetyl in AOT-RMs. The intensity of phosphorescence was observed to be about 13 times higher than that seen in aqueous SDS micelles. [Pg.173]

The photoinduced charge separation between N-alkyl-N -methyl-4,4 -dipyridinium dichloride (CnMV2+ Cn = dodecyl, tetradecyl, hexadecyl, and octadecyl) and Ru(bpy)j + was also strongly affected by the presence of CTAC micells 21 . Upon reduction by Ru(bpy)j +, the viologen aquires hydrophobic properties leading to solubilization into micells (Eq. (13)). The subsequent recombination reaction is retarded by the positive surface of the micell. This decreases the rate constant of the back electron transfer at least by 500. [Pg.10]

Aqueous pools of reversed micelles have been fruitfully employed for the in situ generation of semiconductor particles. The first publication in this area described the formation of CdS in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) aggregates in isooctane [611]. The preparation involved the addition of aqueous CdCl or Cd(N03)2 to isooctane solutions of AOT. Exposure to controlled ammeters of the CdS particles formed. Irradiation of degassed, AOT-reversed-micelle-entrapped, platinized CdS by visible light (450-W Xenon lamp X > 350 nm) in the presence of thiophenol (PhSH) resulted in sustained hydrogen formation. Sacrificial electron transfer occurred from thiophenol to positive holes in the colloidal CdS and, consequently, diminished undesirable electron-hole recombinations (Fig. 101) [611]. [Pg.127]


See other pages where Micelles electron transfer is mentioned: [Pg.427]    [Pg.576]    [Pg.427]    [Pg.832]    [Pg.427]    [Pg.576]    [Pg.427]    [Pg.832]    [Pg.2594]    [Pg.382]    [Pg.208]    [Pg.1069]    [Pg.212]    [Pg.231]    [Pg.250]    [Pg.250]    [Pg.563]    [Pg.14]    [Pg.765]    [Pg.328]    [Pg.161]    [Pg.130]    [Pg.130]    [Pg.131]    [Pg.429]    [Pg.487]    [Pg.577]    [Pg.357]    [Pg.358]    [Pg.219]    [Pg.766]    [Pg.50]    [Pg.334]    [Pg.323]   
See also in sourсe #XX -- [ Pg.567 ]




SEARCH



© 2024 chempedia.info