Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelle critical micellar concentration

Monomer/Micelle Equilibrium Mixtures of surfactants, like any surfactant species in an aqueous solution, give rise to monomer or micelle aggregates provided that the concentration reaches a minimum value, called the critical micellar concentration (CMC). The micelles thus formed are mixed, i.e. made up of the different surfactant species in solution. [Pg.276]

The critical micellar concentrations of anionic/nonionic surfactant mixtures examined are low in a saline medium, so that, at the concentrations injected in practice, the chromatographic effects resulting from the respective adsorption of monomers are masked. Such surfactants propagate simultaneously in the medium in the form of mixed micelles. [Pg.290]

In order to separate neutral compounds, Terabe et al. [13] added surfactants to the buffer electrolyte. Above their critical micellar concentration (cmc), these surfactants form micelles in the aqueous solution of the buffer electrolyte. The technique is then called Micellar electrokinetic capillary chromatography, abbreviated as MECC or MEKC. Micelles are dynamic structures consisting of aggregates of surfactant molecules. They are highly hydrophobic in their inner structure and hydrophilic at the outer part. The micelles are usually... [Pg.613]

Pyrene has been used to investigate the extent of water penetration into micelles and to accurately determine critical micellar concentrations (Kalyanasundaram, 1987). Polarity studies of silica or alumina surfaces have also been reported. In lipid vesicles, measurement of the ratio Ii/Iui provides a simple tool for determination of phase transition temperatures and also the effect of cholesterol addition. [Pg.224]

Inspection of Table 3.6 together with Scheme 3.11 reveals a few general trends. First of all, the effect seems to be connected to micelle formation. The data of Table 3.6 together with other results of detailed studies [132-133,136-139] show that the largest effect of the surfactants on the reaction rate can be observed around the critical micellar concentration (c.m.c.) of the amphiphiles. Accordingly, non-ionic surfactants (Brij, Tween) with very... [Pg.83]

Micelles tend to aggregate, and there are many ways to measure their concentration, including surface tension measurements. The midpoint of the concentration range over which micellar aggregation occurs is called the critical micellar concentration (CMC). Below the CMC, added bile-salt molecules dissolve in the form of monomers above the CMC, added bile-salt molecules form micelles, leaving the monomeric concentration essentially constant. The pH at which CMC formation occurs is called the critical micellar pH, (CMpH). Table 1.1 lists values for some of the bile acids mentioned in this review. [Pg.8]

There are several possibilities for the determination of the critical micellar concentration. If the micelles are formed from charged surfactants, a plot of the electrophoretic current at constant high voltage against the surfactant concentration shows an inflection point at the ccmc. It should be noted that the critical micellar concentration changes with temperature, the kind and concentration of counterions, and other buffer ingredients. [Pg.54]

Vpsp and Vip are the volumes of the micellar and aqueous (liquid) phase, respectively Csf is the concentration of the surfactant in the BGE V is the partial specific volume of the micelle CMC is the critical micellar concentration... [Pg.192]

With short chain derivatives, the forces of repulsion are higher than the ones of attraction the curvature is high and spherical micelles are formed at a concentration called the critical micellar concentration (cmc). This concentration can be detected by a change in the physico-chemical properties of the solution (e.g. surface tension, Fig. 3 a). Above a characteristic temperature (referred as Krafft temperature), the tensio-active molecules are infinitely soluble in the form of micelles (Fig. 3 b). [Pg.280]

Above a critical micellar concentration, surfactants readily aggregate to form molecular clusters called micelles with the hydrophobic tails of the surfac-... [Pg.144]

Micellar electrokinetic capillary chromatography (MECC), in contrast to capillary electrophoresis (CE) and capillary zone electrophoresis (CZE), is useful for the separation of neutral and partially charged species [266,267]. In MECC, a surfactant, usually sodium dodecyl sulfate (SDS), is added to the buffer solution above its critical micellar concentration to form micelles. Although SDS is certainly the most popular anionic surfactant in MECC, other surfactants such as bile salts have proved to be very effective in separating nonpolar analytes that could not be resolved using SDS [268]. [Pg.166]

Most of the studies on thermodynamics of mixed micellar systems are based on the variation of the critical micellar concentration (CMC) with the relative concentration of both components of the mixed micelles (1-4). Through this approach It Is possible to obtain the free energies of formation of mixed micelles. However, at best, the sign and magnitude of the enthalpies and entropies can be obtained from the temperature dependences of the CMC. An Investigation of the thermodynamic properties of transfer of one surfactant from water to a solution of another surfactant offers a promising alternative approach ( ), and, recently, mathematical models have been developed to Interpret such properties (6-9). [Pg.79]

Surfactants having a positive curvature, above a given concentration usually called the critical micellar concentration, cmc, self-assemble to form oil-in-water aggregates called normal micelles. The surfactant most often used is sodium dodecyl sulfate, Na(DS) or SDS. To make particles, the counterion of the surfactant is replaced by ions which participate in the chemical reaction. These are called functionalized surfactants. [Pg.219]

Micelles and vesicles can be formed above a certain concentration. For instance, small micelles are formed above critical micellar concentration, cmc. (The latter abbreviation is often used for critical vesicle concentration, too. However, sometimes a more general term critical aggregate concentration, cac is also applied.) Bilayers of specific amphiphiles with two tails are typical of the central part of cell membranes discussed in some detail in the next chapter. Studying artificial mono- and bilayers (uniform or with built in pores) is indispensable for gaining information about the structure and functioning of cell membranes involving the transport through them. [Pg.67]

Propranolol hydrochloride and promethazine hydrochloride increased the gel points and no straight line relationship existed, indicating that at higher concentrations these drugs enable the polymer to hydrate to a much larger extent than at lower concentrations. Promethazine forms micelles at concentrations. 5% w/v [9], which may be responsible for this behaviour. No critical micellar concentration is known for propanolol hydrochloride but from studies performed it is weakly surface active. The response of HPMC to these drugs may be associated with this surface activity. [Pg.27]

Long-chain fatty acids are insoluble in water, and their titration curves are concentration-dependent because of the formation of organized aggregates (acid soaps, soap micelles, fatty acid precipitates) which concentrate protons at the surface. At concentrations above the critical micellar concentration, solutions of long-chain fatty acid soaps manifest a diprotic curve when they are titrated from pH 10 to 4 (23). The first... [Pg.71]

The polymerizability of R-(EO)n-VB macromonomers has its maximum (Rp) around n=15-20 [51]. This finding was related to the micelle formation which is expected to be unfavored for either too long or too short chain length of PEO. The macromonomers and their polymacromonomers with very short R are soluble in water and therefore they lose their amphiphilic nature. The parameters of R and n of macromonomer (R-(EO)n-VB) were found to correlate with the formation of micelles and their structure. In the aqueous phase the scattering intensity increased with the concentration of macromonomer above the CMC. The critical micellar concentration in water was found to be in the range from 3.3 xl0 5to 7.1xl0 5 mol dm-3 for several R-(EO)n-VB macromonomers. [Pg.23]

Plots of surface tension versus concentration for n-pentanol [49], LiCl (based on Ref. [50]), and SDS in an aqueous medium at room temperature are shown in Fig. 3.7. The three curves are typical for three different types of adsorption. The SDS adsorption isotherm is typical for amphiphilic substances. In many cases, above a certain critical concentration defined aggregates called micelles are formed (see Section 12.1). This concentration is called the critical micellar concentration (CMC). In the case of SDS at 25°C this is at 8.9 mM. Above the CMC the surface tension does not change significantly any further because any added substance goes into micelles not to the liquid-gas interface. [Pg.38]

A temperature-composition phase diagram for a surfactant solution is a characteristic phase diagrarr that delineates the conditions under which crystalline surfactant, monomers, or micelles will exist. On the phase diagram shown in Figure 12.5 (Smirnova, 1995), L represents the liquid phase, S the solid phase, and )(the surfactant mole fraction. The critical micellar temperature, CMT, is deLned as the line between the crystalline and micellar phases. Micelle formation occurs at temperatures greater than the CMT. The critical micellar concentration, CMC, line separates the micellar and... [Pg.267]

Amphiphilic molecules (surfactants) can assemble into nanoscopic supramolecular structures with a hydrophobic core and a hydrophilic shell micellar arrangement. As surfactant concentration is increased in aqueous solutions, the separated molecules aggregate into micelles upon reaching a concentration interval known as the critical micellar concentration (CMC). [Pg.506]


See other pages where Micelle critical micellar concentration is mentioned: [Pg.1624]    [Pg.1624]    [Pg.353]    [Pg.386]    [Pg.744]    [Pg.410]    [Pg.119]    [Pg.275]    [Pg.34]    [Pg.87]    [Pg.44]    [Pg.35]    [Pg.282]    [Pg.15]    [Pg.30]    [Pg.59]    [Pg.113]    [Pg.54]    [Pg.191]    [Pg.117]    [Pg.4]    [Pg.31]    [Pg.504]    [Pg.162]    [Pg.296]    [Pg.619]    [Pg.353]    [Pg.24]    [Pg.40]    [Pg.120]    [Pg.458]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Critical concentration

Critical micell concentration

Critical micellar

Critical micelle concentration

Critical micelle concentration micellization

Critical micellization concentrations

Factors affecting the critical micelle concentration and micellar size

Micellar concentration

Micellar electrokinetic chromatography critical micelle concentration

Micelle Formation and Critical Micellar Concentration (CMC) of Bile Salts

Micelle concentration

Micelle/micellar

Micelles critical micelle concentration

Mixed micelles critical micellar concentrations

© 2024 chempedia.info