Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methylation definition

Toluene-p-sulphonamide can be similarly converted into the dimethyl-amide, but the methylation now occurs in two definite stages. First the sulphonamide dissolves in the sodium hydroxide to form the mono-sodium salt (see p. 252), which then reacts with the dimethyl sulphate to give the mono-... [Pg.221]

Extensive discussions have focused on the conformation of the alkyl chains in the interior ". It has been has demonstrated that the alkyl chains of micellised surfactant are not fully extended. Starting from the headgroup, the first two or three carbon-carbon bonds are usually trans, whereas gauche conformations are likely to be encountered near the centre of tlie chain ". As a result, the methyl termini of the surfactant molecules can be located near the surface of the micelle, and have even been suggested to be able to protrude into the aqueous phase "". They are definitely not all gathered in the centre of tire micelle as is often suggested in pictorial representations. NMR studies have indicated that the hydrocarbon chains in a micelle are highly mobile, comparable to the mobility of a liquid alkane ... [Pg.127]

At first, the dimeric nature of the base isolated from 3-ethyl-2-methyl-4-phenylthiazolium was postulated via a chemical route. Indeed the adduct of ICH, on a similar 2-ethylidene base is a 2-isopropylthiazolium salt in the case of methylene base it is an anilinovinyl compound identified by its absorption spectrum and chemical reactivity (45-47). This dimeric structure of the molecule has been definitively established by its NMR spectrum. It is very similar to the base issued from 2.3-dimethyl-benzo thiazolium (48). It corresponds to 2-(3 -ethyl-4 -phenyl-2 -methylenethiazolinilydene)2-methyl-3-ethyl-4-phenylthiazoline (13). There is only one methyl signal (62 = 2.59), and two series of signals (63= 1.36-3.90, 63= 1.12-3.78) correspond to ethyl groups. Three protons attributed to positions T,5,5 are shifted to a lower field 5.93, 6.58, and 8.36 ppm. The bulk of the ten phenyl protons is at 7.3 ppm (Scheme 22). [Pg.39]

Oakmoss. Extracts of oakmoss are extensively used in perfumery to furnisli parts of the notes of the fougnre or chypre type. The first step in the preparation of an oakmoss extract is treatment of the Hchen Evemiaprunastri (L.) Ach., collected from oak trees mainly in southern and central Europe, with a hydrocarbon solvent to obtain a concrete. The concrete is then further processed by solvent extraction or distillation to more usable products, of which absolutes are the most versatile for perfumery use. A definitive analysis of oakmoss volatiles was performed in 1975 (52). The principal constituents of a Yugoslav oakmoss are shown in Table 15 (53). A number of phenoHc compounds are responsible for the total odor impression. Of these, methyl P-orcinol carboxylate is the most characteristic of oakmoss. [Pg.314]

Table 5.7 lists the nucleophilic constants for a number of species according to this definition. It is apparent from Table 5.7 that nucleophilicity toward methyl iodide does not correlate directly with basicity. Azide ion, phenoxide ion, and bromide are all equivalent in nucleophilicity but differ greatly in basicity. Conversely, azide ion and acetate ion are... [Pg.291]

The indolinol character of eseretholemethine is indicated by the fact that the methiodide on treatment with picric acid yields a diquaternary pierate (m.p. 170°) with the loss of the hydroxyl group. More definite proof is afforded by the oxidation of eseretholemethine with ammoniaeal silver nitrate or potassium ferricyanide, when a dehydroeseretholemethine (oxyeseretholemethine of Polonovski), pierate, m.p. 199°, is produced which is assumed to have formula (VI), since on exhaustive methylation it yields trimethylamine and an unsaturated product (deep-red pierate, m.p. 103°), which absorbs two atoms of hydrogen, forming 5-ethoxy-l 8-dimethyl-S-ethyl-2-indolinone (VII), colourless cubes, m.p. 68°. The... [Pg.542]

Taft began the LFER attack on steric effects as part of his separation of electronic and steric effects in aliphatic compounds, which is discussed in Section 7.3. For our present purposes we abstract from that treatment the portion relevant to aromatic substrates. Hammett p values for alkaline ester hydrolysis are in the range +2.2 to +2.8, whereas for acid ester hydrolysis p is close to zero (see Table 7-2). Taft, therefore, concluded that electronic effects of substituents are much greater in the alkaline than in the acid series and. in fact, that they are negligible in the acid series. This left the steric effect alone controlling relative reactivity in the acid series. A steric substituent constant was defined [by analogy with the definition of cr in Eq. (7-22)] by Eq. (7-43), where k is the rate constant for acid-catalyzed hydrolysis of an orr/to-substituted benzoate ester and k is the corresponding rate constant for the on/to-methyl ester note that CH3, not H, is the reference substituent. ... [Pg.335]

On the basis of the reaction of alkyl radicals with a number of polycyclic aromatics, Szwarc and Binks calculated the relative selectivities of several radicals methyl, 1 (by definition) ethyl, 1.0 n-propyl, 1.0 trichloromethyl, 1.8. The relative reactivities of the three alkyl radicals toward aromatics therefore appears to be the same. On the other hand, quinoline (the only heterocyclic compound so far examined in reactions with alkyl radicals other than methyl) shows a steady increase in its reactivity toward methyl, ethyl, and n-propyl radicals. This would suggest that the nucleophilic character of the alkyl radicals increases in the order Me < Et < n-Pr, and that the selectivity of the radical as defined by Szwarc is not necessarily a measure of its polar character. [Pg.163]

From the evidence discussed above, the framework of methylkasugaminide is determined to be methyl 2,4-diamino-2,3,4,6-tetradeoxyhexo-pyranoside in which hydrogens at C-4 and C-5 are axial-axial and hydrogens at C-l and C-2 are not in axial-axial relation. The structure was definitely proved by the application of the spin decoupling technique and, moreover, the relative relations of all hydrogens were confirmed. [Pg.28]

Compound 6 crystallizes from cyclohexane as colorless needles which have no definite melting point there is a change of color to yellow at 128-134 C and the compound then melts sharply at 187-189 r C. When the colorless form is kept for a long time or recrystallized from pyridine or dimethyl sulfoxide it is changed into the yellow modification of mp 187-189 C recrystallization from cyclohexane reverses the process. It has been suggested that the yellow stable form has structure 6A and that the colorless metastable compound is the tautomer 2-methyl-l//-pyrido[2,3-6][l, 4]diazepin-4(5//)-one (6B). There is evidence from 1H NMR spectroscopy that the isomeric pyridodiazepin-2-one, yellow crystals, mp 195—197 " C, exists as an inseparable mixture of the tautomers 4-methyl-l//-pyrido[2,3-6][l,4]diazepin-2(3//)-one (7 A) and 4-methyl-l H-pyrido[2,3-6][l, 4Jdiazepin-2(5//)-one (7B) in the ratio 1 3. [Pg.436]

Earlier in this section we made reference to the azo coupling of triphenylphos-phonium cyclopentadienylide (12.109). Makhailov et al. (1984) found that penta-methylcyclopentadiene (12.121) reacts with mono-, di-, and trinitrobenzenediazo-nium salts to give a mixture of 12.122 and 12.123, formed by arylazo substitutions at the sp3-hybridized carbon of the five-membered ring and at the methyl group attached to the same carbon atom, respectively. This is definitely not a classical azo coupling ... [Pg.345]

The two rate constants are related by a numerical factor ki = 2fc2. (Also, see Problem 1.) Obviously one should not report that the rate constant for the dimerization of methyl radicals is X, unless a definition of k is given. [Pg.5]

It is evident from Table 2 that the chemical shift data are very similar in both states of aggregation. Only the carbonyl carbon show a small but definite shifts, 2 ppm. In the solution state, in acetone -d6 solution the relaxation times T1 of the pyranose carbon atoms are very similar and only slightly smaller than those of the carbon atom of the methyl group in the acetyl substituent, while the T1-value of the carbon atom of the carbonyl group is considerably higher. [Pg.8]

Fig. 23. Experimental and calculated methyl-deuteron spectra of polycarbonate for different temperatures and different evolution times Tr For the definition of cf. Fig. 13. The width of the distribution of correlation times is 2.7 decades... Fig. 23. Experimental and calculated methyl-deuteron spectra of polycarbonate for different temperatures and different evolution times Tr For the definition of cf. Fig. 13. The width of the distribution of correlation times is 2.7 decades...
Model A cannot be eliminated definitely by the photographs there are, however, some points which make this model improbable. From the curve for this model the first minimum would be expected to be at least as well pronounced as the second minimum, whereas on the photographs the first minimum is not very well defined. That the qualitative appearance of the photographs supports model C rather than model A is further shown by the fact that the photographs resemble those of methyl nitrate more closely than those of carbon tetrafluoride. Some evidence is also provided by the radial distribution curve (Fig. 1), the first peak being displaced by 0.15 A. from the position expected for it for model A. For these reasons and the additional reason that it is difficult to correlate the tetrahedral configuration with an electronic structure involving only completed octets, we consider model A not to be satisfactory.7... [Pg.639]


See other pages where Methylation definition is mentioned: [Pg.363]    [Pg.95]    [Pg.297]    [Pg.118]    [Pg.414]    [Pg.488]    [Pg.162]    [Pg.126]    [Pg.211]    [Pg.525]    [Pg.135]    [Pg.145]    [Pg.230]    [Pg.653]    [Pg.767]    [Pg.19]    [Pg.386]    [Pg.145]    [Pg.367]    [Pg.47]    [Pg.345]    [Pg.291]    [Pg.24]    [Pg.75]    [Pg.214]    [Pg.218]    [Pg.173]    [Pg.256]    [Pg.37]    [Pg.489]    [Pg.1024]    [Pg.61]   
See also in sourсe #XX -- [ Pg.683 ]




SEARCH



© 2024 chempedia.info