Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl tetrachloride

Trichloro methane Methyl trichloride CHCI3 Dibromo methane Methyl dibromide CH2Br2 Tetrachloro methane Methyl tetrachloride Carbon tetrachloride CCI4... [Pg.284]

In silicon tetrachloride, SiC, chlorine atoms can be replaced by methyl or other alkyl groups to give, for example, CHjSiClj and (CH3)2SiCl2. These two compounds are obtained when methyl... [Pg.189]

Aminoazobenzene is freely soluble in methylated spirit, although insoluble in water. For recrystallisation, therefore, dissolve the crude substance in boiling methylated spirit, remove from the water-bath, and then add water drop by drop until the solution becomes just cloudy owing to the separation of the solute replace the solution momentarily on the water-bath until the cloudiness disappears, and then at once remove the solution, and allow it to cool slowly. (Alternatively, the crude dry material can be reciystallised from carbon tetrachloride in the usual way.) Aminoazobenzene is thus obtained as yellowish-brown crystals, m.p. 126° yield, 5 g. [Pg.209]

Methyl iodide, ethyl bromide and iodide, higher alpihatic halides chloroform, iodoform, carbon tetrachloride chlorobenzene, bromobenzene, iodobenzene benzyl chloride. [Pg.318]

Physical Properties. All heavier than, and insoluble in water. All liquids, except iodoform, CHI3, which is a yellow crystalline solid with a characteristic odour. The remainder are colourless liquids when pure ethyl iodide, CjHjI, and iodobenzene, CjHgl, are, however, usually yellow or even brown in colour. Methyl iodide, CH3I, ethyl bromide, CgH Br, ethyl iodide, chloroform, CHCI3, and carbon tetrachloride, CCI4, have sweetish odours, that of chloroform being particularly characteristic. [Pg.390]

Similar results are obtained with methyl iodide, ethyl bromide, ethyl iodide, iodoform, carbon tetrachloride, and benzyl chloride. [Pg.391]

Other mixtures which may be employed are carbon tetrachloride (b.p. 77°) and toluene (b.p. 110-111°) chloroform (b.p. 61°) and toluene methyl alcohol (b.p. 65°) and water (b.p. 100°). The last example is of interest because almost pure methyl alcohol may be isolated no constant boiling point mixture (or azeotropic mixture) is formed (compare ethyl alcohol and water, Sections 1,4 and 1,5). Attention is directed to the poisonous character of methyl alcohol the vapour should therefore not be inhaled. [Pg.232]

To obtain a maximum yield of the acid it is necessary to hydrolyse the by-product, iaoamyl iaovalerate this is most economically effected with methyl alcoholic sodium hydroxide. Place a mixture of 20 g. of sodium hydroxide pellets, 25 ml. of water and 225 ml. of methyl alcohol in a 500 ml. round-bottomed flask fitted with a reflux (double surface) condenser, warm until the sodium hydroxide dissolves, add the ester layer and reflux the mixture for a period of 15 minutes. Rearrange the flask for distillation (Fig. II, 13, 3) and distil off the methyl alcohol until the residue becomes pasty. Then add about 200 ml. of water and continue the distfllation until the temperature reaches 98-100°. Pour the residue in the flask, consisting of an aqueous solution of sodium iaovalerate, into a 600 ml. beaker and add sufficient water to dissolve any solid which separates. Add slowly, with stirring, a solution of 15 ml. of concentrated sulphuric acid in 50 ml. of water, and extract the hberated acid with 25 ml. of carbon tetrachloride. Combine this extract with extract (A), dry with a httle anhydrous magnesium or calcium sulphate, and distil off the carbon tetrachloride (Fig. II, 13, 4 150 ml. distiUing or Claisen flask), and then distil the residue. Collect the wovaleric acid 172-176°. The yield is 56 g. [Pg.356]

If an emulsion should form during the washing process, add about 10 ml. of carbon tetrachloride (for details, see under Methyl Benzoate,. Section IV,176). [Pg.783]

Mix 31 g. (29-5 ml.) of benzyl alcohol (Section IV, 123 and Section IV,200) and 45 g. (43 ml.) of glacial acetic acid in a 500 ml. round-bottomed flask introduce 1 ml. of concentrated sulphuric acid and a few fragments of porous pot. Attach a reflux condenser to the flask and boil the mixture gently for 9 hours. Pour the reaction mixture into about 200 ml. of water contained in a separatory funnel, add 10 ml. of carbon tetrachloride (to eliminate emulsion formation owing to the slight difference in density of the ester and water, compare Methyl Benzoate, Section IV,176) and shake. Separate the lower layer (solution of benzyl acetate in carbon tetrachloride) and discard the upper aqueous layer. Return the lower layer to the funnel, and wash it successively with water, concentrated sodium bicarbonate solution (until effervescence ceases) and water. Dry over 5 g. of anhydrous magnesium sulphate, and distil under normal pressure (Fig. II, 13, 2) with the aid of an air bath (Fig. II, 5, 3). Collect the benzyl acetate a (colourless liquid) at 213-215°. The yield is 16 g. [Pg.783]

The use of ether may be avoided by mixing the ester, after its isolation from the water layer, with about 20 ml. of carbon tetrachloride. The carbon tetrachloride solution then forms the lower layer in all washing operations (compare Methyl Benzoate, Section IV,176). [Pg.784]

Methyl y-bromocrotonate. Mix 36 g. of iV-bromosuccinimide, 40 g. of methyl crotonate and 60 ml. of dry, redistilled carbon tetrachloride in a 500 ml. round bottomed flask. Reflux ou a water bath for 12 hours by this time all the sohd should have risen to the surface of the liquid. Filter off the succinimide at the pump and wash it with a little dry carbon tetrachloride. Remove the solvent on a water bath and distil the residue under reduced pressure, preferably from a Widmer flask (compare Figs. II, 24, 4-5). Collect the methyl y-bromocrotonate at 77-78°/8 mm. the yield is 31 g. [Pg.927]

Auto-association of A-4-thiazoline-2-thione and 4-alkyl derivatives has been deduced from infrared spectra of diluted solutions in carbon tetrachloride (58. 77). Results are interpretated (77) in terms of an equilibrium between monomer and cyclic dimer. The association constants are strongly dependent on the electronic and steric effects of the alkyl substituents in the 4- and 5-positions, respectively. This behavior is well shown if one compares the results for the unsubstituted compound (K - 1200 M" ,). 4-methyl-A-4-thiazoline-2-thione K = 2200 M ). and 5-methyl-4-r-butyl-A-4-thiazoline-2-thione K=120 M ) (58). [Pg.384]

SAN resins show considerable resistance to solvents and are insoluble in carbon tetrachloride, ethyl alcohol, gasoline, and hydrocarbon solvents. They are swelled by solvents such as ben2ene, ether, and toluene. Polar solvents such as acetone, chloroform, dioxane, methyl ethyl ketone, and pyridine will dissolve SAN (14). The interactions of various solvents and SAN copolymers containing up to 52% acrylonitrile have been studied along with their thermodynamic parameters, ie, the second virial coefficient, free-energy parameter, expansion factor, and intrinsic viscosity (15). [Pg.192]

Many chlorine compounds, including methyl chlorosilanes, such as ClSi(CH2)3, Cl2Si(CH3)2, Cl3Si(CH3) tetrachlorosilane [10026-04-7] SiCl chlorine, CI2 and carbon tetrachloride, CCl, can completely react with molecular surface hydroxyl groups to form hydrochloric acid (40), which then desorbs from the gel body in a temperature range of 400—800°C, where the pores are still interconnected. Carbon tetrachloride can yield complete dehydration of ultrapure gel—siUca optical components (3,23). [Pg.256]

Chlorinated by-products of ethylene oxychlorination typically include 1,1,2-trichloroethane chloral [75-87-6] (trichloroacetaldehyde) trichloroethylene [7901-6]-, 1,1-dichloroethane cis- and /n j -l,2-dichloroethylenes [156-59-2 and 156-60-5]-, 1,1-dichloroethylene [75-35-4] (vinyhdene chloride) 2-chloroethanol [107-07-3]-, ethyl chloride vinyl chloride mono-, di-, tri-, and tetrachloromethanes (methyl chloride [74-87-3], methylene chloride [75-09-2], chloroform, and carbon tetrachloride [56-23-5])-, and higher boiling compounds. The production of these compounds should be minimized to lower raw material costs, lessen the task of EDC purification, prevent fouling in the pyrolysis reactor, and minimize by-product handling and disposal. Of particular concern is chloral, because it polymerizes in the presence of strong acids. Chloral must be removed to prevent the formation of soflds which can foul and clog operating lines and controls (78). [Pg.418]

By-products from EDC pyrolysis typically include acetjiene, ethylene, methyl chloride, ethyl chloride, 1,3-butadiene, vinylacetylene, benzene, chloroprene, vinyUdene chloride, 1,1-dichloroethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane [71-55-6] and other chlorinated hydrocarbons (78). Most of these impurities remain with the unconverted EDC, and are subsequendy removed in EDC purification as light and heavy ends. The lightest compounds, ethylene and acetylene, are taken off with the HCl and end up in the oxychlorination reactor feed. The acetylene can be selectively hydrogenated to ethylene. The compounds that have boiling points near that of vinyl chloride, ie, methyl chloride and 1,3-butadiene, will codistiU with the vinyl chloride product. Chlorine or carbon tetrachloride addition to the pyrolysis reactor feed has been used to suppress methyl chloride formation, whereas 1,3-butadiene, which interferes with PVC polymerization, can be removed by treatment with chlorine or HCl, or by selective hydrogenation. [Pg.419]

The nmr spectmm of PVAc iu carbon tetrachloride solution at 110°C shows absorptions at 4.86 5 (pentad) of the methine proton 1.78 5 (triad) of the methylene group and 1.98 5, 1.96 5, and 1.94 5, which are the resonances of the acetate methyls iu isotactic, heterotactic, and syndiotactic triads, respectively. Poly(vinyl acetate) produced by normal free-radical polymerization is completely atactic and noncrystalline. The nmr spectra of ethylene vinyl acetate copolymers have also been obtained (33). The ir spectra of the copolymers of vinyl acetate differ from that of the homopolymer depending on the identity of the comonomers and their proportion. [Pg.463]

Chlorination of various hydrocarbon feedstocks produces many usehil chlorinated solvents, intermediates, and chemical products. The chlorinated derivatives provide a primary method of upgrading the value of industrial chlorine. The principal chlorinated hydrocarbons produced industrially include chloromethane (methyl chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), chloroethene (vinyl chloride monomer, VCM), 1,1-dichloroethene (vinylidene chloride), 1,1,2-trichloroethene (trichloroethylene), 1,1,2,2-tetrachloroethene (perchloroethylene), mono- and dichloroben2enes, 1,1,1-trichloroethane (methyl chloroform), 1,1,2-trichloroethane, and 1,2-dichloroethane (ethylene dichloride [540-59-0], EDC). [Pg.506]

Ninety-six percent of the EDC produced in the United States is converted to vinyl chloride for the production of poly(vinyl chloride) (PVC) (1) (see Vinyl polymers). Chloroform and carbon tetrachloride are used as chemical intermediates in the manufacture of chlorofluorocarbons (CECs). Methjiene chloride, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene have wide and varied use as solvents. Methyl chloride is used almost exclusively for the manufacture of silicone. Vinylidene chloride is chiefly used to produce poly (vinylidene chloride) copolymers used in household food wraps (see Vinylidene chloride and poly(vinylidene chloride). Chloroben2enes are important chemical intermediates with end use appHcations including disinfectants, thermoplastics, and room deodorants. [Pg.506]

Chemical initiation generates organic radicals, usually by decomposition of a2o (11) or peroxide compounds (12), to form radicals which then react with chlorine to initiate the radical-chain chlorination reaction (see Initiators). Chlorination of methane yields all four possible chlorinated derivatives methyl chloride, methylene chloride, chloroform, and carbon tetrachloride (13). The reaction proceeds by a radical-chain mechanism, as shown in equations 1 through. Chain initiation... [Pg.508]

Methanol, heated at 250°C with chloroform or carbon tetrachloride in contact with active carbon, is converted in part to methyl chloride (52). Methyl chloride has been produced from methoxymagnesium chloride, CH OMgCl, a by-product from the manufacture of certain organo—sHicon compounds, by heating over 200°C (53). [Pg.514]

The most widely used method of analysis for methyl chloride is gas chromatography. A capillary column medium that does a very good job in separating most chlorinated hydrocarbons is methyl siUcone or methyl (5% phenyl) siUcone. The detector of choice is a flame ionisation detector. Typical molar response factors for the chlorinated methanes are methyl chloride, 2.05 methylene chloride, 2.2 chloroform, 2.8 carbon tetrachloride, 3.1, where methane is defined as having a molar response factor of 2.00. Most two-carbon chlorinated hydrocarbons have a molar response factor of about 1.0 on the same basis. [Pg.516]

Chloroform can be manufactured from a number of starting materials. Methane, methyl chloride, or methylene chloride can be further chlorinated to chloroform, or carbon tetrachloride can be reduced, ie, hydrodechlorinated, to chloroform. Methane can be oxychlorinated with HCl and oxygen to form a mixture of chlorinated methanes. Many compounds containing either the acetyl (CH CO) or CH2CH(OH) group yield chloroform on reaction with chlorine and alkali or hypochlorite. Methyl chloride chlorination is now the most common commercial method of producing chloroform. Many years ago chloroform was almost exclusively produced from acetone or ethyl alcohol by reaction with chlorine and alkali. [Pg.525]


See other pages where Methyl tetrachloride is mentioned: [Pg.283]    [Pg.316]    [Pg.283]    [Pg.316]    [Pg.94]    [Pg.163]    [Pg.781]    [Pg.815]    [Pg.709]    [Pg.1193]    [Pg.31]    [Pg.376]    [Pg.387]    [Pg.263]    [Pg.199]    [Pg.317]    [Pg.506]    [Pg.514]    [Pg.514]    [Pg.514]    [Pg.519]    [Pg.519]    [Pg.525]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



© 2024 chempedia.info