Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl-1-propanol oxidation

Isobutyl alcohol, isobutanol, 2-methyl-propanol, isopropyl carbinol, Me2CHCH20H. B.p. 108°C. Occurs in fusel-oil. Oxidized by potassium permanganate to 2-methyl-propanoic acid dehydrated by strong sulphuric acid to 2-methylpropene. [Pg.71]

Piperidin l-(5-Isopropy 1-2-thienyl-methyl)- -1-oxid IV/la, 299f. 2-Propanol 3-Diethylamino-l-phenylthio- Vl/la, 1, 388f. [Pg.1184]

Other groups have also obtained relatively high values for chain-type reactions. As already mentioned, Lepore and coworkers found values, approaching unity for propanol oxidation [62]. Raupp and Junio found values exceeding unity, as large as 3.0, for the oxidation of acetone and methyl-f-butyl ether [99]. Stark and Rabani measured... [Pg.518]

Percent product distribution acetone 24.5 5.1, 2-methyl-2-propanol 18.8 4.0, 2-methyl-2-hydroperoxypropane 36.7 7.5, 2-methyl-propanal 14.0 3.9, 2-methyl-propanol 4.4 1.3, tertiary butylperoxide < 1.7. The peroxy radicals involved are primary 2-methyl-1-propylperoxy, primary methylperoxy and tertiary 2-methyl-2-propylperoxy. The relatively large yield of tertiary butanol is due to the interaction between CH3OO and tertiary butylperoxy radicals. Computer simulations based on the known rate coefficients for the self-reactions of these radicals [2] gave = 3 x 10" cm molecule s for the cross combination reaction. To simulate the observed ratio of primary alcohol and aldehyde requires a rate coefficient p 3 x 10" cm molecule s for the interaction between 2-methyl-1-propylperoxy and tertiary 2-methyl-2-propyl-peroxy radicals. The oxidation mechanism is quantitatively well understood. [Pg.226]

Membranes and Osmosis. Membranes based on PEI can be used for the dehydration of organic solvents such as 2-propanol, methyl ethyl ketone, and toluene (451), and for concentrating seawater (452—454). On exposure to ultrasound waves, aqueous PEI salt solutions and brominated poly(2,6-dimethylphenylene oxide) form stable emulsions from which it is possible to cast membranes in which submicrometer capsules of the salt solution ate embedded (455). The rate of release of the salt solution can be altered by surface—active substances. In membranes, PEI can act as a proton source in the generation of a photocurrent (456). The formation of a PEI coating on ion-exchange membranes modifies the transport properties and results in permanent selectivity of the membrane (457). The electrochemical testing of salts (458) is another possible appHcation of PEI. [Pg.14]

Oxidation of the hydroxyl group, after protection of the amine group by ben2oylation, gives amino acids (7), eg, oxidation of 2-amino-2-methyl-l-propanol to 2-methylalanine [62-57-7] (CH )2CNH2COOH. [Pg.18]

Propylene oxide is a colorless, low hoiling (34.2°C) liquid. Table 1 lists general physical properties Table 2 provides equations for temperature variation on some thermodynamic functions. Vapor—liquid equilibrium data for binary mixtures of propylene oxide and other chemicals of commercial importance ate available. References for binary mixtures include 1,2-propanediol (14), water (7,8,15), 1,2-dichloropropane [78-87-5] (16), 2-propanol [67-63-0] (17), 2-methyl-2-pentene [625-27-4] (18), methyl formate [107-31-3] (19), acetaldehyde [75-07-0] (17), methanol [67-56-1] (20), ptopanal [123-38-6] (16), 1-phenylethanol [60-12-8] (21), and / /f-butanol [75-65-0] (22,23). [Pg.133]

Trimethyl aluminum and propylene oxide form a mixture of 2-methyl-1-propanol and 2-butanol (105). Triethyl aluminum yields products of 2-methyl-1-butanol and 2-pentanol (106). The ratio of products is determined by the ratio of reactants. Hydrolysis of the products of methyl aluminum dichloride and propylene oxide results ia 2-methylpropeae and 2-butene, with elimination of methane (105). Numerous other nucleophilic (107) and electrophilic (108) reactions of propylene oxide have been described ia the Hterature. [Pg.135]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

The oxidative cleavage by the procedure of Lemieux (9) was not convenient on a large scale due to the dilute reaction conditions, (7.5 L of 2 1 water 2-methyl-2-propanol) and the need for nine equivalents of relatively expensive sodium metaperiodate... [Pg.438]

Generally, primary aliphatic alcohols are oxidized to their respective aldehydes, secondary aliphatic and aromatic alcohols to the corresponding ketones, and allyl and benzyl alcohols to their carboxylic acid or carboxylate ions. For instance, 2-propanol, acetaldehyde, and methyl-benzoate ions are oxidized quantitatively to acetone, acetate, and terephtalate ion respectively, while toluene is converted into benzoate ion with an 86% yield. Controlling the number of coulombs passed through the solution allows oxidation in good yield of benzyl alcohol to its aldehyde. For diols,502 some excellent selectivity has been reached by changing the experimental conditions such as pH, number of coulombs, and temperature. [Pg.499]

Various nucleophiles other than methanol can be introduced onto the carbonyl carbon. Anodic oxidation of acylsilanes in the presence of allyl alcohol, 2-methyl-2-propanol, water, and methyl /V-methylcarbamate in dichlorometh-ane affords the corresponding esters, carboxylic acid, and amide derivatives (Scheme 24) [16]. Therefore, anodic oxidation provides a useful method for the synthesis of esters and amides under neutral conditions. [Pg.74]

D-Ribonolactone is a convenient source of chiral cyclopentenones, acyclic structures, and oxacyclic systems, useful intermediates for the synthesis of biologically important molecules. Cyclopentenones derived from ribono-lactone have been employed for the synthesis of prostanoids and carbocyclic nucleosides. The cyclopentenone 280 was synthesized (265) from 2,3-0-cyclohexylidene-D-ribono-1,4-lactone (16b) by a threestep synthesis that involves successive periodate oxidation, glycosylation of the lactol with 2-propanol to give 279, and treatment of 279 with lithium dimethyl methyl-phosphonate. The enantiomer of 280 was prepared from D-mannose by converting it to the corresponding lactone, which was selectively protected at HO-2, HO-3 by acetalization. Likewise, the isopropylidene derivative 282 was obtained (266) via the intermediate unsaturated lactone 281, prepared from 16a. Reduction of 281 with di-tert-butoxy lithium aluminum hydride, followed by mesylation, gave 282. [Pg.192]

The study above (Hanna et al., 1992) also addressed the problem of nucleophilic addition of alcohols to DMPO, using Fe111 as the oxidant in an aqueous-alcoholic solution (from 95% to 25% water). Only primary alcohols engaged in this reaction, whereas 2-propanol or 2-methyl-2-propanol did not react even when the alcohol concentration was increased to 70%. This may depend on either decreased reactivity of secondary and tertiary alcohols, perhaps for steric reasons, or lower stability of the corresponding spin adducts. [Pg.135]

Methylperhydrindanes, 20 281 2-Methyl-1-propanol, reactions over reduced nickel oxide catalyst, 35 357 2-Methylpropene, vibrational spectra, 41 97-100... [Pg.143]

Propylbenzene, see Propylbenzene Propyl carbinol, see 1-Butanol Propylene aldehyde, see Acrolein, Crotonaldehyde Propylene chloride, see 1,2-Dichloropropane Propylene dichloride, see 1,2-Dichloropropane a,p-Propylene dichloride, see 1.2-Dichloropropane 1,2-Propylene oxide, see Propylene oxide Propyl ester of acetic acid, see Propyl acetate Propylethylene, see 1-Pentene 5-Propylhexane, see 4-Methyloctane Propyl hydride, see Propane Propylic alcohol, see 1-Propanol Propyl iodide, see 1-Iodopropane n-Propyl iodide, see 1-Iodopropane Propylmethanol, see 1-Butanol Propyl methyl ketone, see 2-Pentanone n-Propyl nitrate, see Propyl nitrate... [Pg.1506]

Davis, R.A. and Pogainis, B.J. Solubility of nitrous oxide in aqneons blends of TV-methyldiethanolamine and 2-amino-2-methyl-1-propanol, J. Chem. Eng. Data, 40(6) 1249-1251, 1995. [Pg.1648]


See other pages where Methyl-1-propanol oxidation is mentioned: [Pg.503]    [Pg.329]    [Pg.252]    [Pg.358]    [Pg.92]    [Pg.252]    [Pg.429]    [Pg.211]    [Pg.1556]    [Pg.39]    [Pg.141]    [Pg.42]    [Pg.233]    [Pg.438]    [Pg.232]    [Pg.1570]    [Pg.241]    [Pg.362]    [Pg.186]    [Pg.64]    [Pg.650]    [Pg.241]    [Pg.968]    [Pg.1484]    [Pg.1546]    [Pg.180]    [Pg.739]    [Pg.771]   
See also in sourсe #XX -- [ Pg.729 ]




SEARCH



2 Methyl 2 propanol

2-Propanol oxidation

Methyl 3-oxid

Methyl oxide

Methyl, oxidation

© 2024 chempedia.info