Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl methacrylate terpolymers

Fig. 56. Dependence of specific refractive index increment on conversion of monomers to polymer for a styrene/acrylonitrile/methyl methacrylate terpolymer in methyl ethyl ketone at 20 °C and 436 nm. (a) - partial azeotrope, (b) terpolymer with composition distribution163 ... Fig. 56. Dependence of specific refractive index increment on conversion of monomers to polymer for a styrene/acrylonitrile/methyl methacrylate terpolymer in methyl ethyl ketone at 20 °C and 436 nm. (a) - partial azeotrope, (b) terpolymer with composition distribution163 ...
The success of similar predictions of such characteristics for (styrene + methyl acrylate + methyl methacrylate) terpolymer [310] is one more evidence of the efficiency of the developed approach. [Pg.86]

The variability in the pyrolysis profiles of the different classes of coatings is self-evident. The interpretation of the composition revealed is as follows The acrylic lacquer (General Motors) is a methyl methacrylate/methacrylic acid copolymer plasticized with dibutyl-, butyl cyclohexyl-, and butyl benzyl phthalates. The acrylic enamel (Ford) is a styrene/ethylhexyl acrylale/methyl methacrylate terpolymer. The alkyd enamel (Honda) pyrolysis profile indicates that the paint resin is an orthoph-thaUc alkyd containing a butylated-amino resin cross-linking component. [Pg.178]

Discuss the dyad probabilities in SANM, styrene-acrylonitrile-methyl methacrylate terpolymer. [Pg.252]

Consider the preparation of styrene-acrylonitrile and methyl methacrylate terpolymer in a CSTR. There can be 3x3 = 9 possible dyads formed. These are AA, AS, SA, SS, SM, MS, AM, MA, and MM. The reactivity ratios can be read from Chapter lO, Table 10.1 The terpolymer composition can be calculated using the terpolymerization composition equations for a CSTR given in Equations (10.23-10.25). The dyad probabilities were calculated using an MS Excel spreadsheet and listed in Table 11.3. Let AN be denoted as monomer 1, styrene as monomer 2, and methyl methacrylate as monomer 3. Assuming that the bond formation order does not influence the rate, that is. [Pg.252]

Raman spectroscopy has been applied to the determination of unsaturation in styrene-butadiene-methyl methacrylate terpolymers [96, 105,106]. [Pg.93]

Methyl Methacrylate Terpolymer 4-5 Low Density Polyethylene (LDPE) 8-9 Nylon 66 (PA 66) 9... [Pg.3434]

Numerous recipes have been pubUshed, primarily ia the patent Hterature, that describe the preparation of acrylate and methacrylate homopolymer and copolymer dispersions (107,108). A typical process for the preparation of a 50% methyl methacrylate, 49% butyl acrylate, and 1% methacrylic acid terpolymer as an approximately 45% dispersion ia water begias with the foUowiag charges ... [Pg.169]

A typical process for the preparation of an acryUc solution terpolymer of composition 27.5% 2-ethyIhexyl acrylate—41.3% methyl methacrylate—31.2% hydroxyethyl methacrylate begins with the following charges ... [Pg.266]

Small concentrations of vinylcarboxyhc acids, eg, acryhc acid, methacrylic acid, or itaconic acid, are sometimes included to enhance adhesion of the polymer to the substrate. The abihty to crystalline and the extent of crystallization are reduced with increa sing concentration of the comonomers some commercial polymers do not crystalline. The most common lacquer resins are terpolymers of VDC—methyl methacrylate—acrylonitrile (162,163). The VDC level and the methyl methacrylate—acrylonitrile ratio are adjusted for the best balance of solubihty and permeabihty. These polymers exhibit a unique combination of high solubihty, low permeabihty, and rapid crystallization (164). [Pg.442]

Terpolymers based on methyl methacrylate, butadiene and styrene (MBS) have been increasingly used in recent years both as tough transparent plastics materials in themselves and as additives for PVC (see also Chapters 12 and 16). [Pg.423]

Blending of ABS with an acrylic material such as poly(methyl methacrylate) can in some cases allow a matching of the refractive indices of the rubbery and glassy phases and providing that there is a low level of contaminating material such as soap and an absence of insoluble additives a reasonable transparent ABS-type polymer may be obtained. More sophisticated are the complex terpolymers and blends of the MBS type considered below. Seldom used on their own, they are primarily of use as impact modifiers for unplasticised PVC. [Pg.446]

Besides the MBS materials, related terpolymers have been prepared. These include materials prepared by terpolymerising methyl methacrylate, acrylonitrile and styrene in the presence of polybutadiene (Toyolac, Hamano 500) methyl methacrylate, acrylonitrile and styrene in the presence of a butadiene-methyl methacrylate copolymer (XT Resin), and methylacrylate, styrene and acrylonitrile on to a butadiene-styrene copolymer. [Pg.449]

By utilizing a combination of RAFT and cationic ROP, the synthesis of [poly(methyl methacrylate)][poly(l,3-dioxepane)][polystyrene] miktoarm star terpolymers was achieved [182], The approach involved the synthesis of PS functionalized with a dithiobenzoate group by RAFT polymerization and subsequent reaction with hydroxyethylene cinnamate (Scheme 98). The newly created hydroxyl group was then used for the cationic ring opening polymerization of 1,3-dioxepane (DOP). The remaining dithiobenzoate group was used for the RAFT polymerization of methyl methacrylate. [Pg.111]

Some work has been done on blends of ABC and AB or AC or AB C block copolymers, such as polystyrene-b-polybutadiene-b-poly(methyl methacrylate) (PS-h-PB-fc-PMMA) triblock terpolymers with PS-h-PB or PB-h-PMMA or other systems. Besides known morphologies for these block copolymers (though at other overall compositions with respect to the different chemical... [Pg.212]

Isobutylene-based (C-4) process, for methyl methacrylate production, 16 244,254r-257 Isobutylene—isoprene-divinylbenzene terpolymers, 4 437... [Pg.494]

Table 15. Apparent molecular weights (M ) by LS in different solvents for terpolymers comprising acrylonitrile, styrene and methyl methacrylate... Table 15. Apparent molecular weights (M ) by LS in different solvents for terpolymers comprising acrylonitrile, styrene and methyl methacrylate...
Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]... Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]...
Compositionally uniform copolymers of tributyltin methacrylate (TBTM) and methyl methacrylate (MMA) are produced in a free running batch process by virtue of the monomer reactivity ratios for this combination of monomers (r (TBTM) = 0.96, r (MMA) = 1.0 at 80°C). Compositional ly homogeneous terpolymers were synthesised by keeping constant the instantaneous ratio of the three monomers in the reactor through the addition of the more reactive monomer (or monomers) at an appropriate rate. This procedure has been used by Guyot et al 6 in the preparation of butadiene-acrylonitrile emulsion copolymers and by Johnson et al (7) in the solution copolymerisation of styrene with methyl acrylate. [Pg.329]

Glass transition data for copolymers and terpolymers of controlled and uncontrolled composition are shown in Figures 6 and 7. The Tg s calculated using the equations 7 and 8 of Fox (12) and Woods (13) have been used with the following hompolymer Tg s methyl methacrylate, 108°C tributyltin methacrylate, 0°C 2-ethylhexyl acrylate, -50"C (14-16) are also shown. [Pg.332]

Nitrile rubber (NBR), a copolymer of 1,3-butadiene with 20-40% acrylonitrile, is noted for its oil resistance. More than 150 million pounds are produced annually in the United States. Applications include fuel tanks, gasoline hoses, and creamery equipment. Nitrile resin is made by copolymerizing acrylonitrile with about 20-30% styrene or methyl methacrylate in the presence of NBR or SBR rubber to yield a blend of the graft terpolymer and homocopolymer. Applications include extruded and blow-molded containers for household, automotive, and other products as well as some nonbeverage foods (spices, vitamins, candy). [Pg.533]

An appropriate formalism for Mark-Houwink-Sakurada (M-H-S) equations for copolymers and higher multispecies polymers has been developed, with specific equations for copolymers and terpolymers created by addition across single double bonds in the respective monomers. These relate intrinsic viscosity to both polymer MW and composition. Experimentally determined intrinsic viscosities were obtained for poly(styrene-acrylonitrile) in three solvents, DMF, THF, and MEK, and for poly(styrene-maleic anhydride-methyl methacrylate) in MEK as a function of MW and composition, where SEC/LALLS was used for MW characterization. Results demonstrate both the validity of the generalized equations for these systems and the limitations of the specific (numerical) expressions in particular solvents. [Pg.263]

In this paper a generalized approach is presented to the derivation of H-H-S equations for multispecies polymers created by addition polymerization across single double bonds in the monomers. The special cases of copolymers and terpolymers are derived. This development is combined with experimental results to evaluate the numerical parameters in the equations for poly(styrene-acrylonitrile ) (SAN) in three separate solvents and for poly(styrene-maleic anhydride-methyl methacrylate) (S/HA/MM) in a single solvent. The three solvents in the case of SAN are dimethyl formamide (DMF), tetrahydrofuran (THF), and methyl ethyl ketone (MEK) and the solvent for S/HA/HH is HER. [Pg.264]

Since M2 and M3 are very similar, the S/MA/MM terpolymer might be treated as a copolymer (S/MA), lumping methyl methacrylate and styrene together, and rewriting eq.(5) as... [Pg.266]

In an effort to improve PMMA s photosensitivity further, methyl methacrylate has been copolymerized with higher percentages of the a-keto-oxime methacrylate and terpolymerized with varying amounts of methacrylonitrile. The resulting effects on resist properties, e.g., sensitivity, contrast and resolution, and plasma resistance, are reported here. The terpolymers are up to 85 times more sensitive than PMMA, and retain its high resolution characteristics. [Pg.30]

Since the late 1960 s a few papers have demonstrated compositional analysis of various polymer systans by Raman spectroscopy. For example, Boerio and Yuann (U) developed a method of analysis for copolymers of glycidyl methacrylate with methyl methacrylate and styrene. Sloane and Bramston-Cook (5) analyzed the terpolymer system poly(methyl methacrylate-co-butadiene-co-styrene). The composition of copolymers of styrene-ethylene dimethacrylate and styrene-divinylbenzene was determined by Stokr et (6). Finally, Water (7) demonstrated that Raman spectroscopy could determine the amount of residual monomer in poly(methyl methacrylate) to the % level. This was subsequently lowered to less than 0.1% (8). In spite of its many advantages, the potential of Raman spectroscopy for the analysis of polymer systems has never been fully exploited. [Pg.48]

Figure 2 shows survey Raman spectra of the hcmopolymers, poly(methyl methacrylate)(PMMA.), poly(3-oximino-2-hutannone methacrylate)(pom), and poly(methacrylonitrile)(PMAN), and one terpolymer(P(M-0M-CN)) with a S/N ratio of about 10 1. Each of the polymers has a band specific to that polymer 8l2 dcm-1 (vg (C-O-C) for IMMA), 1622 hem" (Vg(C=N) for POM), and 2237 dcm l(vg(CHN) for PMAN). Additionally, there is an asymmetric C-H bending mode at 1 53 Acm l, common to all three homopolymers, which serves as an internal standard. These bands are indicated by arrows in Figure 2. A broad fluorescence background is evident, but it can be reduced to acceptable levels by exposure to high laser power for 10-30 minutes, depending on the sample. Residual background fluorescence may be due to the oximino chromophore itself. Figure 3 depicts an example of actual data for a 75 15 10 terpolymer with a S/N ratio of about 50 1. Figure 2 shows survey Raman spectra of the hcmopolymers, poly(methyl methacrylate)(PMMA.), poly(3-oximino-2-hutannone methacrylate)(pom), and poly(methacrylonitrile)(PMAN), and one terpolymer(P(M-0M-CN)) with a S/N ratio of about 10 1. Each of the polymers has a band specific to that polymer 8l2 dcm-1 (vg (C-O-C) for IMMA), 1622 hem" (Vg(C=N) for POM), and 2237 dcm l(vg(CHN) for PMAN). Additionally, there is an asymmetric C-H bending mode at 1 53 Acm l, common to all three homopolymers, which serves as an internal standard. These bands are indicated by arrows in Figure 2. A broad fluorescence background is evident, but it can be reduced to acceptable levels by exposure to high laser power for 10-30 minutes, depending on the sample. Residual background fluorescence may be due to the oximino chromophore itself. Figure 3 depicts an example of actual data for a 75 15 10 terpolymer with a S/N ratio of about 50 1.
The terpolymer of the radical ring-opening polymerization monomer, 5-methyl-ene-2-phenyl-l,3-dioxolan-4-one, (I), with styrene, and methyl methacrylate was also prepared. [Pg.412]

Products with improved properties use instead pure PMMA a terpolymer from 1,3-butadiene, styrene, and methyl methacrylate (8). Actually, the proposed blend consists of up to 6 components of copolymers of different composition and particle diameters. [Pg.336]


See other pages where Methyl methacrylate terpolymers is mentioned: [Pg.123]    [Pg.79]    [Pg.46]    [Pg.124]    [Pg.3409]    [Pg.123]    [Pg.79]    [Pg.46]    [Pg.124]    [Pg.3409]    [Pg.196]    [Pg.268]    [Pg.480]    [Pg.444]    [Pg.331]    [Pg.350]    [Pg.22]    [Pg.125]    [Pg.327]    [Pg.655]    [Pg.576]    [Pg.58]    [Pg.71]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



METHYL METHACRYLATE TERPOLYMER

Methacrylate Terpolymer

Methyl methacrylate

Methyl methacrylate-butadiene-styrene terpolymer

Terpolymer

Terpolymers

© 2024 chempedia.info