Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl formate, reaction

The methyl formate reaction route was shown to be dependent on the nature of the support. CO does not form and methyl formate and formic acid are the only intermediates [93]. The suggested reaction path over y-alumina is as follows [101, 105, 106] ... [Pg.194]

The chemical resolution process of Scheme 6 was developed into an economically favorable one by the ready recycle of both the FPA resolving agent and the combined (mostly S) amine fractions. FPA, which was prepared by methyl formate reaction with L-phenylalanine, was shown to be stable (no racemization and no hydrolysis) when the resolution and work-up processes were conducted within the pH range of 2-12 at temperatures below 25°C (higher temperatures were not studied). FPA meeting specification was isolated in yields of ca. 95% by simple acidification of its aqueous salt solutions and filtration. [Pg.278]

The only other reported case of a dione-ester reaction is the tetra-methyltetralindione (73) — methyl formate reaction included in Or earn, Paice, and Ramsay s 60> survey of reaction of 73. Two radicals, 92 and 93, can be formed by H-abstraction from methyl formate. The methoxy-carbonyl radical, 92, accounted directly for 54% of the product... [Pg.70]

Jenner, G. Bentaleb, A. (1994) Ruthenium-catalyzed ethylene-methyl formate reactions synthesis of propanol and ketones, J. Mol Catal,91, 31-43. [Pg.218]

The Pd-catalyzed reductive carbonylation of methyl acetate with CO and H2 affords acetaldehyde. The net reaction is the formation of acetaldehyde from MeOH, CO, and H2P4]. Methyl formate (109) is converted into AcOH under CO pressure in the presence of Lil and Pd(OAc)2[95],... [Pg.540]

Formaldehyde is readily reduced to methanol by hydrogen over many metal and metal oxide catalysts. It is oxidized to formic acid or carbon dioxide and water. The Cannizzaro reaction gives formic acid and methanol. Similarly, a vapor-phase Tischenko reaction is catalyzed by copper (34) and boric acid (38) to produce methyl formate ... [Pg.491]

Between 50 and 60% of the formaldehyde is formed by the exothermic reaction (eq. 23) and the remainder by endothermic reaction (eq. 24) with the net result of a reaction exotherm. Carbon monoxide and dioxide, methyl formate, and formic acid are by-products. In addition, there are also physical losses, hquid-phase reactions, and small quantities of methanol in the product, resulting in an overall plant yield of 86—90% (based on methanol). [Pg.493]

Coproductioa of ammonium sulfate is a disadvantage of the formamide route, and it has largely been supplanted by processes based on the direct hydrolysis of methyl formate. If the methanol is recycled to the carbonylation step the stoichiometry corresponds to the production of formic acid by hydration of carbon monoxide, a reaction which is too thermodynamicaHy unfavorable to be carried out directly on an iadustrial scale. [Pg.504]

Even though form amide was synthesized as early as 1863 by W. A. Hoffmann from ethyl formate [109-94-4] and ammonia, it only became accessible on a large scale, and thus iadustrially important, after development of high pressure production technology. In the 1990s, form amide is mainly manufactured either by direct synthesis from carbon monoxide and ammonia, or more importandy ia a two-stage process by reaction of methyl formate (from carbon monoxide and methanol) with ammonia. [Pg.507]

However, BASF developed a two-step process (25). After methyl formate [107-31-3] became available in satisfactory yields at high pressure and low temperatures, its conversion to formamide by reaction with ammonia gave a product of improved quaUty and yield in comparison with the earlier direct synthesis. [Pg.508]

There are two processes used commercially for DMF manufacture. A two-step process iavolves carbonylation of methanol [67-56-1] to methyl formate [107-31 -3] and reaction of the formate with dimethylamine. [Pg.513]

The methanol carbonylation is performed ia the presence of a basic catalyst such as sodium methoxide and the product isolated by distillation. In one continuous commercial process (6) the methyl formate and dimethylamine react at 350 kPa (3.46 atm) and from 110 to 120°C to effect a conversion of about 90%. The reaction mixture is then fed to a reactor—stripper operating at about 275 kPa (2.7 atm), where the reaction is completed and DMF and methanol are separated from the lighter by-products. The cmde material is then purified ia a separate distillation column operating at atmospheric pressure. [Pg.513]

The reaction is mn for several hours at temperatures typically below 100°C under a pressure of carbon monoxide to minimise formamide decomposition (73). Conversions of a-hydroxyisobutyramide are near 65% with selectivities to methyl a-hydroxyisobutyrate and formamide in excess of 99%. It is this step that is responsible for the elimination of the acid sludge stream characteristic of the conventional H2SO4—ACH processes. Because methyl formate, and not methanol, is used as the methylating agent, formamide is the co-product instead of ammonium sulfate. Formamide can be dehydrated to recover HCN for recycle to ACH generation. [Pg.252]

Strong base cataly2es the formation of derivatives of formic acid in the reaction between alcohols and carbon monoxide (55). Methyl formate [107-31-3] is made at 443-463 K and 1-2 MPa (10-20 atm) (eq. 14). [Pg.52]

The formamide is dehydrated to HCN which is recycled back to make acetone cyanohydrin. The overall reaction is acetone + methyl formate — MMA + H2O. [Pg.415]

Esters of high volatility, such as methyl formate, methyl acetate, and ethyl formate, have lower boiling points than those of the corresponding alcohols, and therefore can be readily removed from the reaction mixture by distillation. [Pg.376]

Ethanol can also be obtained by the reaction of methanol with synthesis gas at 185°C and under pressure (6.9—20.7 MPa or 68—204 atm) in the presence of a cobalt octacarbonyl catalyst (177). However, although ethanol was the primary product, methyl formate, methyl, propyl and butyl acetates, propyl and butyl alcohols, and methane were all present in the product. [Pg.408]

Catalytic reduction of folic acid to 5,6,7,8-tetrahydrofolic acid (225) proceeds fast in trifluoroacetic acid (66HCA875), but a modified method using chemical reductants leads with sodium dithionite to 7,8-dihydrofolic acid (224). Further treatment with sodium borohydride gives (225) which has been converted into 5-formyl-(6i ,S)-5,6,7,8-tetrahydro-L-folic acid (leucovorin) (226) by reaction with methyl formate (equation 70) (80HCA2554). [Pg.307]

Formaldehyde is a gas with a boiling point of -21 °C. It is usually supplied as a stabilised aqueous solution ( 40% formaldehyde) known as formalin. When formalin is used as the source of the aldehyde, impurities present generally include water, methanol, formic acid, methylal, methyl formate and carbon dioxide. The first three of these impurities interfere with polymerisation reactions and need to be removed as much as possible. In commercial polymerisation the low polymers trioxane and paraformaldehyde are convenient sources of formaldehyde since they can be obtained in a greater state of purity. [Pg.532]

The mechanism of this reaction has been studied by several groups [133,174-177]. The consensus is that interaction of ester with the phenolic resole leads to a quinone methide at relatively low temperature. The quinone methide then reacts rapidly leading to cure. Scheme 11 shows the mechanism that we believe is operative. This mechanism is also supported by the work of Lemon, Murray, and Conner. It is challenged by Pizzi et al. Murray has made the most complete study available in the literature [133]. Ester accelerators include cyclic esters (such as y-butyrolactone and propylene carbonate), aliphatic esters (especially methyl formate and triacetin), aromatic esters (phthalates) and phenolic-resin esters [178]. Carbamates give analogous results but may raise toxicity concerns not usually seen with esters. [Pg.916]

Diffusion-limited rate control at high basicity may set in. This is more eommonly seen in a true Br nsted plot. If the rate-determining step is a proton transfer, and if this is diffusion controlled, then variation in base strength will not affect the rate of reaction. Thus, 3 may be zero at high basicity, whereas at low basicity a dependence on pK may be seen. ° Yang and Jencks ° show an example in the nucleophilic attack of aniline on methyl formate catalyzed by oxygen bases. [Pg.352]

The complex thioamide lolrestat (8) is an inhibitor of aldose reductase. This enzyme catalyzes the reduction of glucose to sorbitol. The enzyme is not very active, but in diabetic individuals where blood glucose levels can. spike to quite high levels in tissues where insulin is not required for glucose uptake (nerve, kidney, retina and lens) sorbitol is formed by the action of aldose reductase and contributes to diabetic complications very prominent among which are eye problems (diabetic retinopathy). Tolrestat is intended for oral administration to prevent this. One of its syntheses proceeds by conversion of 6-methoxy-5-(trifluoroniethyl)naphthalene-l-carboxyl-ic acid (6) to its acid chloride followed by carboxamide formation (7) with methyl N-methyl sarcosinate. Reaction of amide 7 with phosphorous pentasulfide produces the methyl ester thioamide which, on treatment with KOH, hydrolyzes to tolrestat (8) 2[. [Pg.56]

In a 2-1 three-necked flask equipped with a stirrer, a reflux condenser, and a dropping funnel (Note 1) 832 g (4 0 moles) of phosphorus pentachloride is stirred with 250 ml. of phosphorus oxychloride (Note 2) To this is added with stirring 264 g (272 ml, 4 4 moles) of methyl formate (Note 3). During the addition the reaction vessel is cooled in an ice bath to maintain a reaction temperature of 10-20° The addition requires about 1.75 hours When the addition is complete, the solution is stirred at a temperature under 30° until all the phosphorus pentachloride has dissolved (about 1 hour) Then the stirrer is removed, the reflux condenser is replaced by a distilling head, and the reaction... [Pg.47]

Dichloromethyl methyl ether has been prepared by the chlorination of chlorodimethyl ether in the liquid5-4 or gas phase,5 by the reaction of chlorodimethyl ether with sulfuryl chloride and benzoyl peroxide,6 7 and by the treatment of methyl formate with phosphorus pentachloride.8-10... [Pg.48]

Phosphorus pentachlonde, for conver sion of d l 10 camphorsulfomc acid to acid chloride, 46,14 reaction with methyl formate to yield dichloromethyl methyl ether, 47, 47... [Pg.136]

The three-necked flask is charged with 750 ml. of formamide, 25 ml. of water, and 50 g. of ammonium chloride (Note 2). The mixture is heated to 180-190° in an oil bath, and 400 g. (3.02 moles) of 4,4-dimethoxy-2-butanone (Note 3) is added dropwise with stirring over the course of 6 hours (Note 4). The flow of cooling water in the reflux condenser should be adjusted to a rate such that the methanol and methyl formate formed during the reaction distil out (Note 5). After all the acetal has been added, heating is continued for 1 hour (Note 6). The mixture is allowed to cool and is poured into 1 1. of IN sodium hydroxide. The resultant solution is extracted with chloroform in a liquid-liquid extractor for 24 hours. The chloroform is separated, dried over sodium sulfate, and removed by distillation through a short column on a steam bath. [Pg.78]


See other pages where Methyl formate, reaction is mentioned: [Pg.133]    [Pg.581]    [Pg.74]    [Pg.133]    [Pg.581]    [Pg.74]    [Pg.219]    [Pg.508]    [Pg.508]    [Pg.139]    [Pg.59]    [Pg.21]    [Pg.3]    [Pg.89]    [Pg.219]    [Pg.1336]    [Pg.262]    [Pg.445]   
See also in sourсe #XX -- [ Pg.354 ]




SEARCH



Methyl formate

Methyl formate, formation

Methyl formate, reaction with hydroxide

Methyl formation

Reaction with methyl formate

© 2024 chempedia.info