Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl acrylate , free-radical

Methyl acrylate Free radical polymerization similar to the above —CHr-CH— ( OOCHs 0 Amorphous, even when stretched. Soft, rubbery if molecular weight is high. Readily soluble... [Pg.52]

The extruder can be used for a variety of polymerizations even if no preformed polymer is present.89 These include the continuous anionic polymerization of caprolactam to produce nylon 6,90 anionic polymerization of capro-lactone 91 anionic polymerization of styrene 92 cationic copolymerization of 1,3-dioxolane and methylal 93 free radical polymerization of methyl methacrylate 94 addition of ammonia to maleic anhydride to form poly(succin-imide) 95 and preparation of an acrylated polyurethane from polycaprolactone, 4,4 -methylenebis(phenyl isocyanate), and 2-hydroxyethyl acrylate.96 The technique of reaction injection molding to prepare molded parts is slightly different. Polyurethanes can be made this way by... [Pg.209]

Statistical (random) ABBABABAAABBABAABBAABA Methyl methacrylate, butyl acrylate Free-radical polymerization Ftoly(methyl methacrylate-sfaf-butyl acrylate)... [Pg.3]

Poly (methyl Acrylate). The monomer used for preparing poly(methyl acrylate) is produced by the oxidation of propylene. The resin is made by free-radical polymerization initiated by peroxide or azo catalysts and has the following formula ... [Pg.1013]

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

Treatment of 2-methylthiirane with t-butyl hydroperoxide at 150 °C in a sealed vessel gave very low yields of allyl disulfide, 2-propenethiol and thioacetone. The allyl derivatives may be derived from abstraction of a hydrogen atom from the methyl group followed by ring opening to the allylthio radical. Percarbonate derivatives of 2-hydroxymethylthiirane decompose via a free radical pathway to tar. Acrylate esters of 2-hydroxymethylthiirane undergo free radical polymerization through the double bond. [Pg.167]

In dry air and in the presence of polymerisation inhibitors methyl and ethyl 2-cyanoacrylates have a storage life of many months. Whilst they may be polymerised by free-radical methods, anionic polymerisation is of greater significance. A very weak base, such as water, can bring about rapid polymerisation and in practice a trace of moisture on a substrate is enough to allow polymerisation to occur within a few seconds of closing the joint and excluding the air. (As with many acrylic monomers air can inhibit or severely retard polymerisation). [Pg.419]

Polymers in Schemes 12 and 13 were the first examples of the preparation of pyridinium and iminopyridinium ylide polymers. One of the more recent contributions of Kondo and his colleagues [16] deals with the sensitization effect of l-ethoxycarbonyliminopyridinium ylide (IPYY) (Scheme 14) on the photopolymerization of vinyl monomers. Only acrylic monomers such as MMA and methyl acrylate (MA) were photoinitiated by IPYY, while vinylacetate (VA), acrylonitrile (AN), and styrene were unaffected by the initiator used. A free radical mechanism was confirmed by a kinetic study. The complex of IPYY and MMA was defined as an exciplex that served as a precursor of the initiating radical. This ylide is unique in being stabilized by the participation of a... [Pg.375]

By using this technique acrylamide, acrylonitrile, and methyl acrylate were grafted onto cellulose [20]. In this case, oxidative depolymerization of cellulose also occurs and could yield short-lived intermediates [21]. They [21] reported an electron spin resonance spectroscopy study of the affects of different parameters on the rates of formation and decay of free radicals in microcrystalline cellulose and in purified fibrous cotton cellulose. From the results they obtained, they suggested that ceric ions form a chelate with the cellulose molecule, possibly, through the C2 and C3 hydroxyls of the anhy-droglucose unit. Transfer of electrons from the cellulose molecule to Ce(IV) would follow, leading to its reduction... [Pg.503]

The wide variety of methods available for the synthesis of orga-noselenides,36 and the observation that the carbon-selenium bond can be easily cleaved homolytically to give a carbon-centered radical creates interesting possibilities in organic synthesis. For example, Burke and coworkers have shown that phenylselenolactone 86 (see Scheme 16), produced by phenylselenolactonization of y,S-unsaturated acid 85, can be converted to free radical intermediate 87 with triphenyltin hydride. In the presence of excess methyl acrylate, 87 is trapped stereoselectively, affording compound 88 in 70% yield 37 it is noteworthy that the intramolecular carbon-carbon bond forming event takes place on the less hindered convex face of bicyclic radical 87. [Pg.397]

Acrylic Acid, CH2CHCOOH Free Radical Formers such as OH Ion Acrylic Acid Vapor 6000 kg/cm2 >75 Inhibitor—Methyl Ether of Hydroquinone-200ppm Storage in a cool, well ventilated area 18.5 429 Heterogeneous Free-Radical with a catalyst such as Azodiisobutyro-nitrile... [Pg.821]

A polymeric composition for reducing fluid loss in drilling muds and well cement compositions is obtained by the free radical-initiated polymerization of a water-soluble vinyl monomer in an aqueous suspension of lignin, modified lignins, lignite, brown coal, and modified brown coal [705,1847]. The vinyl monomers can be methacrylic acid, methacrylamide, hydroxyethyl acrylate, hydroxypropyl acrylate, vinylacetate, methyl vinyl ether, ethyl vinyl ether, N-methylmethacrylamide, N,N-dimethylmethacrylamide, vinyl sulfonate, and additional AMPS. In this process a grafting process to the coals by chain transfer may occur. [Pg.46]

The. addition of mercaptans to methyl acrylate is catalyzed both by base and by sources of free radicals. The direction of addition is the same in either case, but the radical initiated reaction produces a good deal of polymeric byproduct. [Pg.65]

In 1981 we reported (2, 3) the first examples of free radical polymerizations under phase transfer conditions. Utilizing potassium persulfate and a phase transfer catalyst (e.g. a crown ether or quaternary ammonium salt), we found the solution polymerization of acrylic monomers to be much more facile than when common organic-soluble initiators were used. Somewhat earlier, Voronkov and coworkers had reported (4) that the 1 2 potassium persulfate/18-crown-6 complex could be used to polymerize styrene and methyl methacrylate in methanol. These relatively inefficient polymerizations were apparently conducted under homogeneous conditions, although exact details were somewhat unclear. We subsequently described (5) the... [Pg.116]

Monomer and initiator must be soluble in the liquid and the solvent must have the desired chain-transfer characteristics, boiling point (above the temperature necessary to carry out the polymerization and low enough to allow for ready removal if the polymer is recovered by solvent evaporation). The presence of the solvent assists in heat removal and control (as it also does for suspension and emulsion polymerization systems). Polymer yield per reaction volume is lower than for bulk reactions. Also, solvent recovery and removal (from the polymer) is necessary. Many free radical and ionic polymerizations are carried out utilizing solution polymerization including water-soluble polymers prepared in aqueous solution (namely poly(acrylic acid), polyacrylamide, and poly(A-vinylpyrrolidinone). Polystyrene, poly(methyl methacrylate), poly(vinyl chloride), and polybutadiene are prepared from organic solution polymerizations. [Pg.186]


See other pages where Methyl acrylate , free-radical is mentioned: [Pg.93]    [Pg.102]    [Pg.164]    [Pg.262]    [Pg.364]    [Pg.490]    [Pg.396]    [Pg.170]    [Pg.411]    [Pg.487]    [Pg.746]    [Pg.65]    [Pg.79]    [Pg.88]    [Pg.869]    [Pg.374]    [Pg.159]    [Pg.119]    [Pg.25]    [Pg.344]    [Pg.70]    [Pg.246]    [Pg.242]    [Pg.222]    [Pg.23]    [Pg.671]    [Pg.257]    [Pg.210]    [Pg.213]    [Pg.9]    [Pg.33]    [Pg.67]    [Pg.39]   


SEARCH



Acryl radical

Acrylate radicals

Acrylates methyl acrylate

Methyl acrylate , free-radical polymerization

Methyl free radical

Methyl radical

Radicals methyl radical

© 2024 chempedia.info