Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methane theory

A vexing puzzle m the early days of valence bond theory concerned the fact that methane is CH4 and that the four bonds to carbon are directed toward the corners of a tetrahedron Valence bond theory is based on the overlap of half filled orbitals of the connected atoms but with an electron configuration of s 2s 2p 2py carbon has only two half filled orbitals (Figure 2 8a) How can it have bonds to four hydrogens ... [Pg.64]

Section 2 6 Bonding m methane is most often described by an orbital hybridization model which is a modified form of valence bond theory Four equiva lent sp hybrid orbitals of carbon are generated by mixing the 2s 2p 2py and 2p orbitals Overlap of each half filled sp hybrid orbital with a half filled hydrogen Is orbital gives a ct bond... [Pg.95]

Many simple systems that could be expected to form ideal Hquid mixtures are reasonably predicted by extending pure-species adsorption equiUbrium data to a multicomponent equation. The potential theory has been extended to binary mixtures of several hydrocarbons on activated carbon by assuming an ideal mixture (99) and to hydrocarbons on activated carbon and carbon molecular sieves, and to O2 and N2 on 5A and lOX zeoHtes (100). Mixture isotherms predicted by lAST agree with experimental data for methane + ethane and for ethylene + CO2 on activated carbon, and for CO + O2 and for propane + propylene on siUca gel (36). A statistical thermodynamic model has been successfully appHed to equiUbrium isotherms of several nonpolar species on 5A zeoHte, to predict multicomponent sorption equiUbria from the Henry constants for the pure components (26). A set of equations that incorporate surface heterogeneity into the lAST model provides a means for predicting multicomponent equiUbria, but the agreement is only good up to 50% surface saturation (9). [Pg.285]

Simple Fluids. Spherical compounds having Httle molecular interaction, eg, argon, krypton, xenon, and methane, are known as simple fluids and obey the theory of corresponding states. [Pg.239]

However, we also need to discuss how the attractive interactions between species can be included in the theory of partly quenched systems. These interactions comprise an intrinsic feature of realistic models for partially quenched fluid systems. In particular, the model for adsorption of methane in xerosilica gel of Kaminsky and Monson [41] is characterized by very strong attraction between matrix obstacles and fluid species. Besides, the fluid particles attract each other via the Lennard-Lones potential. Both types of attraction (the fluid-matrix and fluid-fluid) must be included to gain profound insight into the phase transitions in partly quenched media. The approach of Ford and Glandt to obtain the chemical potential utilizing... [Pg.304]

Adsorption of hard sphere fluid mixtures in disordered hard sphere matrices has not been studied profoundly and the accuracy of the ROZ-type theory in the description of the structure and thermodynamics of simple mixtures is difficult to discuss. Adsorption of mixtures consisting of argon with ethane and methane in a matrix mimicking silica xerogel has been simulated by Kaminsky and Monson [42,43] in the framework of the Lennard-Jones model. A comparison with experimentally measured properties has also been performed. However, we are not aware of similar studies for simpler hard sphere mixtures, but the work from our laboratory has focused on a two-dimensional partly quenched model of hard discs [44]. That makes it impossible to judge the accuracy of theoretical approaches even for simple binary mixtures in disordered microporous media. [Pg.306]

For a molecule as simple as Fl2, it is hard to see much difference between the valence bond and molecular orbital methods. The most important differences appear- in molecules with more than two atoms. In those cases, the valence bond method continues to view a molecule as a collection of bonds between connected atoms. The molecular- orbital method, however, leads to a picture in which the sane electron can be associated with many, or even all, of the atoms in a molecule. We ll have more to say about the similarities and differences in valence bond and molecular- orbital theory as we continue to develop their principles, beginning with the simplest alkanes methane, ethane, and propane. [Pg.63]

Before we describe the bonding in methane, it is worth pointing out that bonding theories attempt to describe a molecule on the basis of its component atoms bonding theories do not attempt to explain how bonds for-rn. Thus, the world s methane does not come... [Pg.63]

We win run this job on methane at the Hartree-Fock level using the 6-31G(d) basis our molecule specification is the result of a geometry optimization using the B3LYP Density Functional Theory method with the same basis set. This combination is cited... [Pg.21]

For each system, plot the bond distance versus energy for each of the reported levels of theory. For CH, this will mean plotting the HF, MP2, MP3, and full MP4 (i.e., MP4(SDTQ)) energies at each point. For methane, include the HF, MP2, MP3, lull MP4, QCISD, and QCISD(T) levels. [Pg.187]

B.7 g (56% of theory) of (blphenyl-4-yl)-imidazol-1-yl-phenylmethane [alternatively named es dIphenyI-ImidazolyI-(1)-phenyl-methane or as 1-(a-biphenyI-4-ylbenzyI) imidazole] of melting point 142°C are obtained. [Pg.176]

From what we know about molecular sizes, we can calculate that a particular CH4 molecule collides with an oxygen molecule about once every one-thousandth of a microsecond (1(M seconds) in a mixture of household gas (methane, formula CH4) and air under normal conditions. This means that every second this methane molecule encounters 10 oxygen molecules Yet the reaction does not proceed noticeably. We can conclude either that most of the collisions are ineffective or that the collision theory is not a good explanation. We shall see that the former is the case—we can understand why most collisions might be ineffective in terms of ideas that are consistent with the collision theory. [Pg.129]

Water, electronic correlation, 324 methane-propane ternary system, 23 superposition of configuration, 295 Wigner s theory, cellular method," 252, 304, 306, 318... [Pg.412]

Pentadienyl radical, 240 Perturbation theory, 11, 46 Propane, 16, 165 n-Propyi anion conformation, 34 n-Propyl cation, 48, 163 rotational barrier, 34 Propylene, 16, 139 Protonated methane, 72 Pyrazine, 266 orbital ordering, 30 through-bond interactions, 27 Pyridine, 263 Pyrrole, 231... [Pg.305]

Beckmann P. A., Bloom M., Ozier I. Proton spin relaxation in dilute methane gas a symmetrized theory and its experimental verification, Can. J. Phys. 54, 1712-27 (1976). [Pg.287]

Eagles T. E., McClung R. E. D. Rotational diffusion of spherical top molecules in liquids and gases. IV. Semiclassical theory and applications to the v3 and v4 band shapes of methane in high pressure gas mixtures, J. Chem. Phys. 61, 4070-82 (1974). [Pg.293]

When we try to apply VB theory to methane we run into difficulties. A carbon atom has the configuration [HeJ2s22pvl2p l,1 with four valence electrons (34). However, two valence electrons are already paired and only the two half-filled 2/ -orbitals appear to be available for bonding. It looks as though a carbon atom should have a valence of 2 and form two perpendicular bonds, but in fact it almost always has a valence of 4 (it is commonly tetravalent ) and in CH4 has a tetrahedral arrangement of bonds. [Pg.231]

FIGURE 3.14 Each C H bond in methane is formed by the pairing of an electron in a hydrogen U-orbital and an electron in one of the four sp hybrid orbitals of carbon. Therefore, valence-bond theory predicts four equivalent cr-bonds in a tetrahedral arrangement, which is consistent with experimental results. [Pg.233]

The development of molecular orbital theory (MO theory) in the late 1920s overcame these difficulties. It explains why the electron pair is so important for bond formation and predicts that oxygen is paramagnetic. It accommodates electron-deficient compounds such as the boranes just as naturally as it deals with methane and water. Furthermore, molecular orbital theory can be extended to account for the structures and properties of metals and semiconductors. It can also be used to account for the electronic spectra of molecules, which arise when an electron makes a transition from an occupied molecular orbital to a vacant molecular orbital. [Pg.239]

Methane-to-methanol conversion by gas-phase transition metal oxide cations has been extensively studied by experiment and theory see reviews by Schroder, Schwarz, and co-workers [18, 23, 134, 135] and by Metz [25, 136]. We have used photofragment spectroscopy to study the electronic spectroscopy of FeO" " [47, 137], NiO [25], and PtO [68], as well as the electronic and vibrational spectroscopy of intermediates of the FeO - - CH4 reaction. [45, 136] We have also used photoionization of FeO to characterize low lying, low spin electronic states of FeO [39]. Our results on the iron-containing molecules are presented in this section. [Pg.345]

The mechanism that has been developed for the conversion of methane to methanol by FeO+ is an excellent example of the synergy between experiment and theory. This mechanism includes two key concepts concerted reaction involving the critical [HO—Fe—CH3] insertion intermediate and two-state reactivity. The reaction proceeds as follows electrostatic interaction between FeO+ and methane produces the [OFe- GHJ entrance channel complex. [Pg.345]

The experiments were conducted at four different temperatures for each gas. At each temperature experiments were performed at different pressures. A total of 14 and 11 experiments were performed for methane and ethane respectively. Based on crystallization theory, and the two film theory for gas-liquid mass transfer Englezos et al. (1987) formulated five differential equations to describe the kinetics of hydrate formation in the vessel and the associate mass transfer rates. The governing ODEs are given next. [Pg.314]


See other pages where Methane theory is mentioned: [Pg.297]    [Pg.284]    [Pg.297]    [Pg.284]    [Pg.99]    [Pg.155]    [Pg.63]    [Pg.25]    [Pg.117]    [Pg.248]    [Pg.28]    [Pg.282]    [Pg.1194]    [Pg.456]    [Pg.47]    [Pg.134]    [Pg.247]    [Pg.98]    [Pg.108]    [Pg.20]    [Pg.75]    [Pg.662]    [Pg.346]    [Pg.106]    [Pg.159]    [Pg.201]   
See also in sourсe #XX -- [ Pg.40 , Pg.145 ]




SEARCH



Density functional theory, methane

Methane type theory

VSEPR theory methane

© 2024 chempedia.info