Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-deficient compounds

Given the fact that the catalytic AFC alkylation reactions of electron-rich aromatic rings with electrophilic reagents such as carbonyl compounds, electron-deficient alkenes, and compounds with carbon-carbon double bonds bearing a leaving group in the allylic position have been developed... [Pg.215]

CM with Functinalized Vinyl Compounds Electron-deficient olefins, such as a, 3-unsaturated carbonyl compounds and acrylonitrile, are categorized as type II olefins. The use of these substrates (excess amount) as CM partners provides highly E-selective olefination in the synthesis of natural products, except for acrylonitrile, which... [Pg.698]

Many boron compounds lack an octet of electrons about the central boron atom, which makes the compounds electron deficient. This deficiency also makes them strong Lewis acids. The electron deficiency of some boron compounds leads to bonding of a type that we have not previously encountered. This type of bonding occurs in the boron hydrides. [Pg.1001]

This is known as a hydrogen-bridge structure. There are not enough electrons to make all the dotted-line bonds electron-pairs and hence it is an example of an electron-deficient compound. The structure of diborane may be alternatively shown as drawn in... [Pg.145]

Boranes are typical species with electron-deficient bonds, where a chemical bond has more centers than electrons. The smallest molecule showing this property is diborane. Each of the two B-H-B bonds (shown in Figure 2-60a) contains only two electrons, while the molecular orbital extends over three atoms. A correct representation has to represent the delocalization of the two electrons over three atom centers as shown in Figure 2-60b. Figure 2-60c shows another type of electron-deficient bond. In boron cage compounds, boron-boron bonds share their electron pair with the unoccupied atom orbital of a third boron atom [86]. These types of bonds cannot be accommodated in a single VB model of two-electron/ two-centered bonds. [Pg.68]

Figure 2-60. Soine examples of electron-deficient bonds a) diborane featuring B-H-B bonds b) diborane in a tentative RAMSES representation c) the orbital in a B-B-B bond (which occurs in boron cage compounds),... Figure 2-60. Soine examples of electron-deficient bonds a) diborane featuring B-H-B bonds b) diborane in a tentative RAMSES representation c) the orbital in a B-B-B bond (which occurs in boron cage compounds),...
The H C ratio in hydrocarbons is indicative of the hydrogen deficiency of the system. As mentioned, the highest theoretical H C ratio possible for hydrocarbon is 4 (in CH4), although in electron-deficient carbocationic compounds such as CH5 and even CH/, the ratio is further increased (to 5 and 6, respectively, see Chapter 10). On the other end of the scale in extreme cases, such as the dihydro- or methylene derivatives of recently discovered Cgo and C70 fullerenes, the H C ratio can be as low as 0.03. [Pg.127]

Comparison of data for the nitration of alkyl- and halogenobenzenes with those for the related p-nitro-compounds supports the view that the rate of nitration of highly electron-deficient systems is determined by polarizability factors which enhance the reactivity of the substituted by comparison with that of the unsubstituted system. [Pg.186]

A major difficulty with the Diels-Alder reaction is its sensitivity to sterical hindrance. Tri- and tetrasubstituted olefins or dienes with bulky substituents at the terminal carbons react only very slowly. Therefore bicyclic compounds with polar reactions are more suitable for such target molecules, e.g. steroids. There exist, however, several exceptions, e. g. a reaction of a tetrasubstituted alkene with a 1,1-disubstituted diene to produce a cyclohexene intermediate containing three contiguous quaternary carbon atoms (S. Danishefsky, 1979). This reaction was assisted by large polarity differences between the electron rich diene and the electron deficient ene component. [Pg.86]

The TT-allylpalladium complexes 241 formed from the ally carbonates 240 bearing an anion-stabilizing EWG are converted into the Pd complexes of TMM (trimethylenemethane) as reactive, dipolar intermediates 242 by intramolecular deprotonation with the alkoxide anion, and undergo [3 + 2] cycloaddition to give five-membered ring compounds 244 by Michael addition to an electron-deficient double bond and subsequent intramolecular allylation of the generated carbanion 243. This cycloaddition proceeds under neutral conditions, yielding the functionalized methylenecyclopentanes 244[148], The syn-... [Pg.322]

Hydroxy-THISs react with electron-deficient alkynes to give nonisol-able adducts that extrude carbonyl sulfide, affording pyrroles (23). Compound 16 (X = 0) seems particularly reactive (Scheme 16) (25). The cycloaddition to benzyne yields isoindoles in low- yield. Further cyclo-addition between isoindole and benzyne leads to an iminoanthracene as the main product (Scheme 17). The cycloadducts derived from electron-deficient alkenes are stable (23, 25) unless highly strained. Thus the two adducts, 18a (R = H, R = COOMe) and 18b (R = COOMe, R = H), formed from 7, both extrude furan and COS under the reaction conditions producing the pyrroles (19. R = H or COOMe) (Scheme 18). Similarly, the cycloadduct formed between 16 (X = 0) and dimethylfumarate... [Pg.9]

Sulfonic acid hydrazides, RSO2NHNH2, are prepared by the reaction of hydraziae and sulfonyl haUdes, generally the chloride RSO2CI. Some of these have commercial appHcations as blowiag agents. As is typical of hydrazides generally, these compounds react with nitrous acid to form azides (26), which decompose thermally to the very reactive, electron-deficient nitrenes (27). The chemistry of sulfonic acid hydrazides and their azides has been reviewed (87). [Pg.280]

The alkylation of pyridine [110-86-1] takes place through nucleophiUc or homolytic substitution because the TT-electron-deficient pyridine nucleus does not allow electrophiUc substitution, eg, Friedel-Crafts alkylation. NucleophiUc substitution, which occurs with alkah or alkaline metal compounds, and free-radical processes are not attractive for commercial appHcations. Commercially, catalytic alkylation processes via homolytic substitution of pyridine rings are important. The catalysts effective for this reaction include boron phosphate, alumina, siHca—alurnina, and Raney nickel (122). [Pg.54]

Boron creates an electron deficiency in the siHcon lattice resulting in a -type semiconductor forp—n junctions. Boron compounds are more commonly used as the dopant, however (see Boron hydrides). [Pg.184]

Addition of Grignard reagents and organolithium compounds to the pyridazine ring proceeds as a nucleophilic attack at one of the electron-deficient positions to give initially... [Pg.22]

Electron deficient species can attack the unshared electron pairs of heteroatoms, to form ylides, such as in the reaction of thietane with bis(methoxycarbonyl)carbene. The S —C ylide rearranges to 2,2-bis(methoxycarbonyl)thiolane (Section 5.14.3.10.1). A"-Ethoxycar-bonylazepine, however, is attacked by dichlorocarbene at the C=C double bonds, with formation of the trans tris-homo compound (Section 5.16.3.7). [Pg.26]

Seven procedures descnbe preparation of important synthesis intermediates A two-step procedure gives 2-(HYDROXYMETHYL)ALLYLTRIMETH-YLSILANE, a versatile bifunctional reagent As the acetate, it can be converted to a tnmethylenemethane-palladium complex (in situ) which undergoes [3 -(- 2] annulation reactions with electron-deficient alkenes A preparation of halide-free METHYLLITHIUM is included because the presence of lithium halide in the reagent sometimes complicates the analysis and use of methyllithium Commercial samples invariably contain a full molar equivalent of bromide or iodide AZLLENE IS a fundamental compound in organic chemistry, the preparation... [Pg.224]

Small shift values for CH or CHr protons may indicate cyclopropane units. Proton shifts distinguish between alkyne CH (generally Sh = 2.5 - 3.2), alkene CH (generally 4, = 4.5-6) and aro-matic/heteroaromatic CH (Sh = 6 - 9.5), and also between rr-electron-rich (pyrrole, fiiran, thiophene, 4/ = d - 7) and Tt-electron-deficient heteroaromatic compounds (pyridine, Sh= 7.5 - 9.5). [Pg.11]

In contrast to H shifts, C shifts cannot in general be used to distinguish between aromatic and heteroaromatic compounds on the one hand and alkenes on the other (Table 2.2). Cyclopropane carbon atoms stand out, however, by showing particularly small shifts in both the C and the H NMR spectra. By analogy with their proton resonances, the C chemical shifts of k electron-deficient heteroaromatics (pyridine type) are larger than those of k electron-rieh heteroaromatic rings (pyrrole type). [Pg.13]


See other pages where Electron-deficient compounds is mentioned: [Pg.131]    [Pg.162]    [Pg.92]    [Pg.131]    [Pg.162]    [Pg.92]    [Pg.151]    [Pg.148]    [Pg.152]    [Pg.68]    [Pg.147]    [Pg.156]    [Pg.195]    [Pg.65]    [Pg.92]    [Pg.311]    [Pg.150]    [Pg.551]    [Pg.68]    [Pg.339]    [Pg.322]    [Pg.281]    [Pg.79]    [Pg.41]    [Pg.332]    [Pg.183]    [Pg.254]    [Pg.265]    [Pg.403]    [Pg.276]    [Pg.290]    [Pg.231]    [Pg.819]    [Pg.225]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Aluminum, electron-deficient compounds

Boron electron-deficient compounds

Boron, electron-deficient molecular compounds

Carbonyl compounds electron deficiency

Electron compounds

Electron deficiency

Electron, atom ratio deficient compound

Electron-deficient (multicentre bonded) compounds

Electron-deficient bridge-bonded main group compounds

Electronic compounds

Heterocyclic compounds electron-deficient heterocycles

Lithium bridged electron-deficient compounds

Magnesium bridged electron-deficient compounds

Octet rule electron-deficient compounds

Organometallic compounds electron deficiency

Pyrroles electron deficient unsaturated compounds

Selected Topic in Depth Electron-Deficient Compounds

Structures of Main Group Organometallic Compounds Containing Electron-Deficient

Structures of Main Group Organometallic Compounds Containing Electron-Deficient Bridge

Structures of Main Group Organometallic Compounds Containing Electron-Deficient Bridge Bonds

© 2024 chempedia.info