Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methane oxidation methanol

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

The influence of Zn-deposition on Cu(lll) surfaces on methanol synthesis by hydrogenation of CO2 shows that Zn creates sites stabilizing the formate intermediate and thus promotes the hydrogenation process [2.44]. Further publications deal with methane oxidation by various layered rock-salt-type oxides [2.45], poisoning of vana-dia in VOx/Ti02 by K2O, leading to lower reduction capability of the vanadia, because of the formation of [2.46], and interaction of SO2 with Cu, CU2O, and CuO to show the temperature-dependence of SO2 absorption or sulfide formation [2.47]. [Pg.24]

The lower than expected yields can be explained by the nature of methane oxidation to methanol in these bacteria. This reaction, catalysed by methane mono-oxygenase, is a net consumer of reducing equivalents (NADH), which would otherwise be directed to ATP generation and biosynthesis. In simple terms the oxidation of methane to methanol consumes energy, lowering the yield. [Pg.89]

Methane oxidation and partial oxidation, electrochemical promotion of, 308 dimerization, 470 reforming, 410 Methanol dehydrogenation electrochemical promotion of, 403 selectivity modification, 404 Methanol oxidation electrochemical promotion of 398 selectivity modification, 400 Microscopy... [Pg.571]

Spectroscopy of the PES for reactions of transition metal (M ) and metal oxide cations (MO ) is particularly interesting due to their rich and complex chemistry. Transition metal M+ can activate C—H bonds in hydrocarbons, including methane, and activate C—C bonds in alkanes [18-20] MO are excellent (and often selective) oxidants, capable of converting methane to methanol [21] and benzene to phenol [22-24]. Transition metal cations tend to be more reactive than the neutrals for two general reasons. First, most neutral transition metal atoms have a ground electronic state, and this... [Pg.333]

In 1990, Schroder and Schwarz reported that gas-phase FeO" " directly converts methane to methanol under thermal conditions [21]. The reaction is efficient, occuring at 20% of the collision rate, and is quite selective, producing methanol 40% of the time (FeOH+ + CH3 is the other major product). More recent experiments have shown that NiO and PtO also convert methane to methanol with good efficiency and selectivity [134]. Reactions of gas-phase transition metal oxides with methane thus provide a simple model system for the direct conversion of methane to methanol. These systems capture the essential chemistry, but do not have complicating contributions from solvent molecules, ligands, or multiple metal sites that are present in condensed-phase systems. [Pg.344]

Methane-to-methanol conversion by gas-phase transition metal oxide cations has been extensively studied by experiment and theory see reviews by Schroder, Schwarz, and co-workers [18, 23, 134, 135] and by Metz [25, 136]. We have used photofragment spectroscopy to study the electronic spectroscopy of FeO" " [47, 137], NiO [25], and PtO [68], as well as the electronic and vibrational spectroscopy of intermediates of the FeO - - CH4 reaction. [45, 136] We have also used photoionization of FeO to characterize low lying, low spin electronic states of FeO [39]. Our results on the iron-containing molecules are presented in this section. [Pg.345]

Direct oxidation of methane to methanol is an obvious dream reaction ... [Pg.310]

Eng W, Palumbo AV, Sriharan S, et al. 1991. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures. Appl Biochem Biotechnol 28/29 887-899. [Pg.262]

The Active Oxygen for Direct Oxidation of Methane to Methanol in the Presence of Hydrogen... [Pg.397]

Investigation of direct conversion of methane to transportation fiiels has been an ongoing effort at PETC for over 10 years. One of our current areas of research is the conversion of methane to methanol, under mild conditions, using li t, water, and a semiconductor photocatalyst. Research in our laboratory is directed toward ad ting the chemistry developed for photolysis of water to that of methane conversion. The reaction sequence of interest uses visible light, a doped tungsten oxide photocatalyst and an electron transfer molecule to produce a hydroxyl i cal. Hydroxyl t cal can then react with a methane molecule to produce a methyl radical. In the preferred reaction pathway, the methyl radical then reacts with an additional wata- molecule to produce methanol and hydrogen. [Pg.407]

NMR analysis of product methanol isotops and KIE values of CH2D2 methane oxidation with... [Pg.499]

Results discussed above show in several lines a distinct biomimetic-type activity of iron complexes stabilized in the ZSM-S matrix. The most important feature is their unique ability to coordinate a very reactive a-oxygen form which is similar to the active oxygen species of MMO. At room temperature a-oxygen provides various oxidation reactions including selective hydroxylation of methane to methanol. Like in biological oxidation, the rate determining step of this reaction involves the cleavage of C-H bond. [Pg.501]

DMO [Direct methane oxidation] A process for converting methane to methanol or synthetic liquid fuels. Under development by Catalytica in 1997. [Pg.89]

This cycle, often referred to as the Shilov-cycle converts methane into methanol and chloromethane in homogeneous aqueous solution at mild temperatures of 100-120 °C (11). However, while Pt(II) (added to the reaction as PtCl ) serves as the catalyst, the system also requires Pt(IV) (in the form of PtCle-) as a stoichiometric oxidant. Clearly, this system impressively demonstrates functionalization of methane under mild homogeneous conditions, but is impractical due to the high cost of the stoichiometric oxidant used. A recent development by Catalytica Advanced Technology Inc., often referred to as the Catalytica system used platinum(II) complexes as catalysts to convert methane into methyl-bisulfate (12). The stoichiometric oxidant in this case is S03, dissolved in concentrated H2S04 solvent. This cycle is depicted in Scheme 3. [Pg.261]

Vanadia catalysts exhibit high activity and selectivity for numerous oxidation reactions. The reactions are partial oxidation of methane and methanol to formaldehyde, and oxidative dehydrogenation of propane to propene and ethane to ethcnc.62 62 The catalytic activity and selectivity of... [Pg.54]

The first use of supercritical fluid extraction (SFE) as an extraction technique was reported by Zosel [379]. Since then there have been many reports on the use of SFE to extract PCBs, phenols, PAHs, and other organic compounds from particulate matter, soils and sediments [362, 363, 380-389]. The attraction of SFE as an extraction technique is directly related to the unique properties of the supercritical fluid [390]. Supercritical fluids, which have been used, have low viscosities, high diffusion coefficients, and low flammabilities, which are all clearly superior to the organic solvents normally used. Carbon dioxide (C02, [362,363]) is the most common supercritical fluid used for SFE, since it is inexpensive and has a low critical temperature (31.3 °C) and pressure (72.2 bar). Other less commonly used fluids include nitrous oxide (N20), ammonia, fluoro-form, methane, pentane, methanol, ethanol, sulfur hexafluoride (SF6), and dichlorofluoromethane [362, 363, 391]. Most of these fluids are clearly less attractive as solvents in terms of toxicity or as environmentally benign chemicals. Commercial SFE systems are available, but some workers have also made inexpensive modular systems [390]. [Pg.56]

Oremland et al. [136] subsequently demonstrated that methane-oxidizing bacteria also had the capacity to co-oxidize methyl bromide by methane monooxygenase produced during the oxidation of methane to methanol. They also showed that methanotrophic soils that had a high capacity to oxidize methane degraded14C-labeled methyl bromide to 14C02. [Pg.390]

The simplest carboxylic acid is formic acid (more systematically methanoic acid) HCOOH. Formic acid contains a single carbon atom and can be thought of as a derivative of methane or methanol obtained by oxidation ... [Pg.85]

OXYGEN, OXIDES 0X0 ANIONS METHANE MONOOXYGENASE Methanol, autoprotolysis constant, AUTOPROTOLYSIS METHANOL DEHYDROGENASE... [Pg.760]

Chan and Wilson [52] tried to oxidize methane to methanol by oxygen on TMPcY and TMTPPY (TM= Co, Fe, Ru, Mn) in the temperature range of 548 K to 773 K. Only RuPcY, CoTPPY and MnTPPY are active towards alcohol formation, yields up to 0.5% being claimed (Table 5). All other catalysts give combustion of methane to carbon dioxide and water. In an attempt to repeat these experiments, the present authors only observed CO, CO2 and H2O formation, and rapid autoxidation of the catalyst. [Pg.242]


See other pages where Methane oxidation methanol is mentioned: [Pg.158]    [Pg.158]    [Pg.442]    [Pg.89]    [Pg.15]    [Pg.344]    [Pg.310]    [Pg.70]    [Pg.397]    [Pg.398]    [Pg.407]    [Pg.493]    [Pg.497]    [Pg.499]    [Pg.190]    [Pg.31]    [Pg.13]    [Pg.23]    [Pg.238]    [Pg.262]    [Pg.659]    [Pg.194]    [Pg.533]    [Pg.22]    [Pg.73]    [Pg.149]    [Pg.242]   
See also in sourсe #XX -- [ Pg.5 , Pg.179 , Pg.195 , Pg.199 , Pg.236 , Pg.262 , Pg.275 , Pg.421 , Pg.435 , Pg.463 , Pg.465 , Pg.466 , Pg.469 , Pg.513 , Pg.528 , Pg.807 , Pg.812 ]




SEARCH



Methanal oxidation

Methane methanol

Methanol oxidation

Oxidative methane

© 2024 chempedia.info