Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metathesis Phillips process

As mentioned above, the first metathesis reaction studied was the equilibrium between propylene and an ethylene 2-butene mixture. In the initial Phillips process this was used to convert excess propylene into ethylene and 2-butene (Scheme 5.55). When propylene demands surged, the process was reversed and is now known as olefins conversion technology (OCT). The OCT process is operated with a fixed-bed reactor, W03 on silica serves as a catalyst. In order to allow... [Pg.259]

For organic chemists, the term metathesis is used most often to mean alkene or olefin metathesis. This process, which can be catalysed by a range of transition metals, was discovered accidentally in the petrochemical industry. Its first commercial application was in the Phillips triolefin process in which propene was converted to an equilibrium mixture of ethene, 2-butene and the starting propene at 400 °C in the presence of an unknown tungsten species (Scheme 8.51). The process was in use between 1966 and 1972. Interestingly, with changes in feedstock prices and demands, the process is now run in reverse, producing propene from ethene and 2-butene. [Pg.274]

Disproportionation of Olefins. Disproportionation or the metathesis reaction offers an opportunity to convert surplus olefins to other desirable olefins. Phillips Petroleum and Institut Fransais du Petrc le have pioneered this technology for the dimerization of light olefins. The original metathesis reaction of Phillips Petroleum was intended to convert propylene to 2-butene and ethylene (58). The reverse reaction that converts 2-butene in the presence of excess ethylene to propylene has also been demonstrated (59). A commercial unit with a capacity of about 136,000 t/yr of propylene from ethylene via 2-butene has been in operation in the Gulf Coast since 1985 (60,61). In this process, ethylene is first dimerized to 2-butene foUowed by metathesis to yield propylene. Since this is a two-stage process, 2-butene can be produced from the first stage, if needed. In the dimerization step, about 95% purity of 2-butene is achieved at 90% ethylene conversion. [Pg.367]

Table 8-5 indicates the wide variety of catalysts that can effect this type of disproportionation reaction, and Figure 8-7 is a flow diagram for the Phillips Co. triolefm process for the metathesis of propylene to produce 2-butene and ethylene. Anderson and Brown have discussed in depth this type of reaction and its general utilization. The utility with respect to propylene is to convert excess propylene to olefins of greater economic value. More discussion regarding olefin metathesis is noted in Chapter 9. [Pg.234]

Figure 8-7. The Phillips Petroleum Co. process for producing 2-butene and ethylene from propylene (1) metathesis reactor, (2) fractionator (to separate propylene recycle from propane), (3, 4) fractionator for separating ethylene, butylenes, and Cg. ... Figure 8-7. The Phillips Petroleum Co. process for producing 2-butene and ethylene from propylene (1) metathesis reactor, (2) fractionator (to separate propylene recycle from propane), (3, 4) fractionator for separating ethylene, butylenes, and Cg. ...
Olefin metathesis is the transition-metal-catalyzed inter- or intramolecular exchange of alkylidene units of alkenes. The metathesis of propene is the most simple example in the presence of a suitable catalyst, an equilibrium mixture of ethene, 2-butene, and unreacted propene is obtained (Eq. 1). This example illustrates one of the most important features of olefin metathesis its reversibility. The metathesis of propene was the first technical process exploiting the olefin metathesis reaction. It is known as the Phillips triolefin process and was run from 1966 till 1972 for the production of 2-butene (feedstock propene) and from 1985 for the production of propene (feedstock ethene and 2-butene, which is nowadays obtained by dimerization of ethene). Typical catalysts are oxides of tungsten, molybdenum or rhenium supported on silica or alumina [ 1 ]. [Pg.224]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

Classical metathesis such as that for the Phillips triolefin process (Eq. 3) or... [Pg.569]

Alkylation processes usually combine isobutane with an alkene or with mixed alkene streams (C3-C5 olefins from FCC units). The best octane ratings are attained when isobutane is alkylated with butylenes. Alkylation of higher-molecular-weight hydrocarbons (>C5) is less economic because of increased probability of side reactions. Phillips developed a technology that combines its triolefin process (metathesis of propylene to produce ethylene and 2-butenes) with alkylation since 2-butenes yield better alkylate than propylene.290 Since ethylene cannot be readily used in protic acid-catalyzed alkylations, a process employing AICI3 promoted by water was also developed.291... [Pg.255]

A number of new processes exploiting metathesis have been developed by Phillips. A novel way to manufacture lubricating oils has been demonstrated.145 The basic reaction is self-metathesis of 1-octene or 1-decene to produce Ci4-C28 internal alkenes. The branched hydrocarbons formed after dimerization and hydrogenation may be utilized as lubricating oils. Metathetical cleavage of isobutylene with propylene or 2-butenes to isoamylenes has a potential in isoprene manufacture.136,146 High isoamylene yields can be achieved by further metathesis of C6+ byproducts with ethylene and propylene. Dehydrogenation to isoprene is already practiced in the transformation of isoamylenes of FCC C5 olefin cuts. [Pg.709]

In the Phillips neohexene process147 2,4,4-trimethyl-2-pentene (8) is converted by cleavage with ethylene to neohexene (9) used in the production of a perfume musk. The starting material is commercial diisobutylene. Since it is a mixture of positional isomers (2,4,4-trimethyl-2-pentene and 2,4,4-trimethyl-l-pentene) and the latter (7) participates in degenerative metathesis, effective utilization of the process requires the isomerization of 7 into 8. A bifunctional catalyst system consisting of an isomerization catalyst (MgO) and a heterogeneous metathesis catalyst is employed 131... [Pg.710]

As discussed in Section 12.3, the triolefin process to transform propylene to ethylene and 2-butene developed by Phillips135,136 is not practiced at present because of the increased demand for propylene. The reverse process, that is, cross-metathesis of ethylene and 2-butene, however, can contribute to satisfy the global demand for propylene. Lyondell Petrochemical operates a 136,000-t/y (ton/year) plant for the production of propylene.236 In a joint project by BASF and FINA, Phillips metathesis technology will be used to enhance propylene production.237 A similar project was also announced by DEA.238 In a continuous process jointly developed by IFP and Chines Petroleum Corporation, cross-metathesis of ethylene and 2-butene is carried out in the liquid phase over Re207-on-Al203 catalyst (35°C, 60 bar).239,240... [Pg.714]

Olefin metathesis was first observed in the 1950s, and was used in industry to convert propylene to a mixture of but-2-ene and ethylene. This Phillips Triolefin Process used an aluminum/molybdenum catalyst whose exact structure was unknown. [Pg.374]

Applications of the olefin metathesis reversible chemical reaction, discovered by Phillips Petroleum in the 1960s, were also developed in the subsequent years. By this reaction, Arco produces propylene from ethylene and butene-2 Hercules prepares its plastic, Metton, from dicyclopentadiene and Shell synthesizes its C12-C14 SHOP (Shell Higher Olefin Process) alcohols used for detergents. [Pg.14]

More than half a century ago it was observed that Re207 and Mo or W carbonyls immobilized on alumina or silica could catalyze the metathesis of propylene into ethylene and 2-butene, an equilibrium reaction. The reaction can be driven either way and it is 100% atom efficient. The introduction of metathesis-based industrial processes was considerably faster than the elucidation of the mechanistic fundamentals [103, 104]. Indeed the first process, the Phillips triolefin process (Scheme 5.55) that was used to convert excess propylene into ethylene and 2-butene, was shut down in 1972, one year after Chauvin proposed the mechanism (Scheme 5.54) that earned him the Nobel prize [105]. Starting with a metal carbene species as active catalyst a metallocyclobutane has to be formed. The Fischer-type metal carbenes known at the time did not catalyze the metathesis reaction but further evidence supporting the Chauvin mechanism was published. Once the Schrock-type metal carbenes became known this changed. In 1980 Schrock and coworkers reported tungsten carbene complexes... [Pg.258]

The reaction is applied in industrial processes (Phillips triolefin process. Shell higher olefin process) and has importance in ring opening-metathesis polymerization (ROMP) in polymer chemistry [1]. In the past, olefin metathesis was not commonly applied in organic synthesis [2] because of the reversibility of the reaction, leading to olefin mixtures. In contrast, industrial processes often handle product mixtures easily. In ROMP, highly strained cyclic olefins allow the equilibrium of the reaction to be shifted towards the product side. [Pg.91]

The latest industrial application of metathesis was developed by Phillips who started up a plant in late 1985 at Cbannelview, Texas, on the L ondell Petrochemical Complex with a production capacity of 135,000 t/year of propylene from ethylene. This facility carries out the disproportionation of ethylene and 2-butenes, in the vapor phase, around 300 to 350°C, at about 0.5.10 Pa absolute, with a VHSV of 50 to 200 and a once-througb conversion of about 15 per cent 2-butenes are themselves obtained by the dimerization of ethylene in a homogeneous phase, which may be followed by a hydroisomerization step to convert the 1-butene formed (see Sections 13.3.2. A and B). IFP is also developing a liquid phase process in this area. [Pg.182]

Metathesis is a versatile reaction that forms the basis for several important industrial processes, such as the Phillips triolefin process, which produces propene by cross-metathesis of 2-butene with ethene, and the Shell higher olefins process (SHOP), which involves a combination process that converts ethene to detergent-range olefins. Several interesting polymeric materials are commercially produced via the ROMP of different types of unsaturated cyclic monomers, including nor-bornene, cyclooctene, and dicyclopentadiene [1]. [Pg.563]

In the field of fine chemistry, the Phillips neohexene process was an early commercial application of olefin metathesis [20]. Neohexene (3,3-dimethyl-l-butene) is an important intermediate in the synthesis of musk perfume. The Phillips neohexene process is based on ethenolysis of an isobutene dimer consisting of a mixture of 2,4,4-trimethyl-2-pentene and 2,4,4-trimethyl-1-pentene. Ethenolysis of the former yields the desired product (Eq. 6). [Pg.565]

Early in 1962, following Phillips Management s decision to develop the Triolefin Process, laboratory studies were resumed and expanded. In addition to conducting a detailed investigation of cobalt molybdate catalyst systems, an extensive search for other catalyst compositions active for olefin metathesis was made. Concurrent with these investigations were studies designed to expand the scope and explore other applications of olefin metathesis reactions. Pilot plant development of Triolefin Process technology was initiated about six months after laboratory studies had been resumed. [Pg.406]

Commercialization of olefin metathesis was accomplished in 1966 (12), Shawinigan Chemical Ltd., at their Varennes complex near Montreal, Quebec, brought the Phillips Triolefin Process on stream. With an excess of propylene at that location,... [Pg.410]

The latest (1980) commercial application of olefin metathesis is Phillips Neohexene Process ( ). Neohexene, an intermediate in the synthesis of a perfume musk, is produced by cross-metathesis of diisobutylene with ethylene (i,e., ethylene cleavage) over a bifunctional (double-bond isomerization/metathesis) catalyst system (Figure 7) ... [Pg.411]

Technology for a number of applications of olefin metathesis has been developed (, fO At Phillips, potential processes for producing isoamylenes for polyisoprene synthesis and long-chain linear olefins from propylene have been through pilot plant development. In the area of specialty petrochemicals, potential industrial applications include the preparation of numerous olefins and diolefins. High selectivities can be achieved by selection of catalyst and process conditions. The development of new classes of catalysts allows the metathesis of certain functional olefins (, 14). The metathesis of alkynes is also feasible (15) ... [Pg.411]

Metathesis of mono- and diolefins can be performed with both homogeneous and heterogeneous catalysis. The most important processes involving metathesis steps, the SHOP process and the Phillips triolefin process, are based on heterogeneous catalysts. Homogeneous catalysts are used in the ring opening metathesis of norbor-nene (Norsorex, CDF-Chemie) and cyclooctene (Vestenamer, Hills) [7]. [Pg.60]

Having traversed some of the key events in the history of olefin metathesis, it is now appropriate to discuss some of the resultant fruits of that early labor in the form of practical applications in organic synthesis. Since the general reaction was bom in the industrial sector, we felt it appropriate to commence with some examples of commercial processes. Among several of the profitable industrial procedures that benefit from olefin metathesis, one of the oldest is the Phillips triolefin process (Scheme 7a) which utilizes a molybdenum-based catalyst system to convert propene (17) into a mixture of 2-butene (18) and ethene (19). These products are then used as monomers for polymer synthesis as well as for general use in petroleum-related applications. The reverse reaction can also be employed to prepare propene for alternative uses. [Pg.172]

Scheme 7. Industrial olefin metathesis applications the Phillips triolefin process for the production of butene and ethene (a) and the Norsorex process for the ring-opening metathesis polymerization (ROMP) of norbornene (b). Scheme 7. Industrial olefin metathesis applications the Phillips triolefin process for the production of butene and ethene (a) and the Norsorex process for the ring-opening metathesis polymerization (ROMP) of norbornene (b).

See other pages where Metathesis Phillips process is mentioned: [Pg.137]    [Pg.367]    [Pg.205]    [Pg.207]    [Pg.212]    [Pg.154]    [Pg.102]    [Pg.128]    [Pg.129]    [Pg.16]    [Pg.457]    [Pg.397]    [Pg.404]    [Pg.201]    [Pg.152]    [Pg.159]    [Pg.161]    [Pg.162]    [Pg.247]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Phillips

Phillips process

© 2024 chempedia.info