Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic Metal Compounds

The co-ordination number in ionic compounds is determined by the radius ratio - a measure of the necessity to minimize cationic contacts. More subtle effects are the Jahn-Teller effect (distortions due to incomplete occupancy of degenerate orbitals) and metal-metal bonding. [Pg.416]

The metal-ion complexmg properties of crown ethers are clearly evident m their effects on the solubility and reactivity of ionic compounds m nonpolar media Potassium fluoride (KF) is ionic and practically insoluble m benzene alone but dissolves m it when 18 crown 6 is present This happens because of the electron distribution of 18 crown 6 as shown m Figure 16 2a The electrostatic potential surface consists of essentially two regions an electron rich interior associated with the oxygens and a hydrocarbon like exterior associated with the CH2 groups When KF is added to a solution of 18 crown 6 m benzene potassium ion (K ) interacts with the oxygens of the crown ether to form a Lewis acid Lewis base complex As can be seen m the space filling model of this... [Pg.669]

The most numerous cases of homogeneous catalysis are by certain ions or metal coordination compounds in aqueous solution and in biochemistry, where enzymes function catalyticaUy. Many ionic effects are known. The hydronium ion and the hydroxyl ion OH" cat-... [Pg.2092]

Crystal structure, crystal defects and chemical reactions. Most chemical reactions of interest to materials scientists involve at least one reactant in the solid state examples inelude surfaee oxidation, internal oxidation, the photographie process, electrochemieal reaetions in the solid state. All of these are critieally dependent on crystal defects, point defects in particular, and the thermodynamics of these point defeets, especially in ionic compounds, are far more complex than they are in single-component metals. I have spaee only for a superficial overview. [Pg.121]

Use of the K p for precipitation information is often complicated by a number of interfering factors including complexation of metallic ions, high ionic strength solutions, and high solids contents. This principle is applicable solely to ionic compounds, i.e., primarily inorganic compounds. [Pg.163]

The HF wave funetion eontains equal amounts of ionie and eovalent eontributions (Section 4.3), For covalently bonded systems, like H2O, the HF wave funetion is too ionie, and the effect of electron correlation is to increase the covalent contribution. Since the ionic dissociation limit is higher in energy than the covalent, the effect is that the equiUbrium bond length increases when correlation methods are used. For dative bonds, such as metal-ligand compounds, the situation is reversed. In this case the HF wave function dissociates correctly, and bond lengths are normally too long. Inclusion of... [Pg.265]

When a metal such as sodium (Na) or calcium (Ca) reacts with a nonmetal such as chlorine (Cl2), the product is ordinarily an ionic compound. The formula of that compound (e.g., NaCl, CaCl2) shows the simplest ratio between cation and anion (one Na+ ion for one Cl ion one Ca2+ ion for two Cl- ions). In that sense, the formulas of ionic compounds are simplest formulas. Notice that the symbol of the metal (Na, Ca) always appears first in the formula, followed by that of the nonmetal. [Pg.38]

In previous chapters we have referred from time to time to compounds of the transition metals. Many of these have relatively simple formulas such as CuSO CrCI3, and FetNO These compounds are ionic The transition metal is present as a simple cation (Cu2+, Cr3+, Fe3+). In that sense, they resemble the ionic compounds formed by the main-group metals, such as CaS04 and AKNOJ ... [Pg.409]

It has been known for more than a century, however, that transition metals also form a variety of ionic compounds with more complex formulas such as... [Pg.409]

Let us apply these ideas to the third-row elements. On the left side of the table we have the metallic reducing agents sodium and magnesium, which we already know have small affinity for electrons, since they have low ionization energies and are readily oxidized. It is not surprising, then, that the hydroxides of these elements, NaOH and Mg(OH)z, are solid ionic compounds made up of hydroxide ions and metal ions. Sodium hydroxide is very soluble in water and its solutions are alkaline due to the presence of the OH- ion. Sodium hydroxide is a strong base. Magnesium hydroxide, Mg(OH)2, is not very soluble in water, but it does dissolve in acid solutions because of the reaction... [Pg.370]

In the preceding chapter we looked at the elements of the third row in the periodic table to see what systematic changes occur in properties when electrons are added to the outer orbitals of the atom. We saw that there was a decided trend from metallic behavior to nonmetallic, from base-forming to acid-forming, from simple ionic compounds to simple molecular compounds. These trends are conveniently discussed... [Pg.377]

In general, binary compounds of two nonmetals are molecular, whereas binary compounds formed by a metal and a nonmetal are ionic. Water (H20) is an example of a binary molecular compound, and sodium chloride (NaCl) is an example of a binary ionic compound. As we shall see, these two types of compounds have... [Pg.47]

We can often decide whether a substance is an ionic compound or a molecular compound by examining its formula. Binary molecular compounds are typically formed from two nonmetals (such as hydrogen and oxygen, the elements in water). Ionic compounds are typically formed from the combination of a metallic element with nonmetallic elements (such as the combination of potassium with sulfur and oxygen to form potassium sulfate, K2S04). Ionic compounds typically contain one metallic element the principal exceptions are compounds containing the ammonium ion, such as ammonium nitrate, which are ionic even though all the elements present are nonmetallic. [Pg.52]

Table 1.1 summarizes the solubility patterns of common ionic compounds in water. Notice that all nitrates and all common compounds of the Group 1 metals are soluble so they make useful starting solutions for precipitation reactions. Any spectator ions can be used, provided that they remain in solution and do not otherwise react. For example, Table 1.1 shows that mercury(I) iodide, Hg2I2, is insoluble. It is formed as a precipitate when solutions containing Hg22+ ions and I ions are mixed ... [Pg.93]

The reaction between an acid and a base is called a neutralization reaction, and the ionic compound produced in the reaction is called a salt. The general form of a neutralization reaction of a strong acid and a metal hydroxide that provides the hydroxide ion, a strong base, in water is... [Pg.99]

Elements at the right of the p block have characteristically high electron affinities they tend to gain electrons to complete closed shells. Except for the metalloids tellurium and polonium, the members of Groups 16/VI and 17/VII are nonmetals (Fig. 1.62). They typically form molecular compounds with one another. They react with metals to form the anions in ionic compounds, and hence many of the minerals that surround us, such as limestone and granite, contain anions formed from non-metals, such as S2-, CO,2-, and S042-. Much of the metals industry is concerned with the problem of extracting metals from their combinations with nonmetals. [Pg.172]

FIGURE 5.46 (a) When a metal s cations are displaced by a blow from a hammer, the mobile electrons can immediately respond and follow the cations to their new positions, and consequently the metal is malleable, (b) This piece of lead nas been flattened by a hammer, whereas crystals of the orange-colored ionic compound leaddl) oxide have shattered. [Pg.324]

Many ionic compounds are considered to pack in such as way that the anions form a close-packed lattice in which the metal cations fill holes or interstitial sites left between the anions. These lattices, however, may not necessarily he as tightly packed as the label close-packed implies. The radius of an F ion is approximately 133 pm. The edge distances of the cubic unit cells of LiF, NaF, KF, RbF, and CsF, all of which... [Pg.332]

The nature of a binary hydride is related to the characteristics of the element bonded to hydrogen (Fig. 14.8). Strongly electropositive metallic elements form ionic compounds with hydrogen in which the latter is present as a hydride ion, H. These ionic compounds are called saline hydrides (or saltlike hydrides). They are formed by all members of the s block, with the exception of beryllium, and are made by heating the metal in hydrogen ... [Pg.704]

The principal product of the reaction of the alkali metals with oxygen varies systematically down the group (Fig. 14.15). Ionic compounds formed from cations and anions of similar radius are commonly found to he more stable than those formed from ions with markedly different radii. Such is the case here. Lithium forms mainly the oxide, Li20. Sodium, which has a larger cation, forms predominantly the very pale yellow sodium peroxide, Na202. Potassium, with an even bigger cation, forms mainly the superoxide, K02, which contains the superoxide ion, O,. ... [Pg.710]

The elements show increasing metallic character down the group (Table 14.6). Carbon has definite nonmetallic properties it forms covalent compounds with nonmetals and ionic compounds with metals. The oxides of carbon and silicon are acidic. Germanium is a typical metalloid in that it exhibits metallic or nonmetallic properties according to the other element present in the compound. Tin and, even more so, lead have definite metallic properties. However, even though tin is classified as a metal, it is not far from the metalloids in the periodic table, and it does have some amphoteric properties. For example, tin reacts with both hot concentrated hydrochloric acid and hot alkali ... [Pg.724]


See other pages where Ionic Metal Compounds is mentioned: [Pg.255]    [Pg.119]    [Pg.255]    [Pg.119]    [Pg.30]    [Pg.257]    [Pg.99]    [Pg.587]    [Pg.327]    [Pg.406]    [Pg.354]    [Pg.225]    [Pg.121]    [Pg.224]    [Pg.303]    [Pg.241]    [Pg.396]    [Pg.587]    [Pg.105]    [Pg.924]    [Pg.949]    [Pg.70]    [Pg.70]    [Pg.295]    [Pg.47]    [Pg.47]    [Pg.328]    [Pg.184]    [Pg.611]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Alkali metals ionic compound formation

Ionic bonding transition metal compounds

Ionic compounds

Ionic compounds alkali metals

Ionic compounds alkaline earth metals

Ionic compounds with metallic conductivity

Lithium compounds alkali metal ionic liquids

Meso-ionic compounds Metal catalysts, action on pyridines

Metallic compounds, ionic

Metallic compounds, ionic

Metallic compounds, ionic polymerization

Metals Ionic compounds with metallic conductivity

Metals binary ionic compound

Metals ionic compounds with

Naming Binary Ionic Compounds Containing a Metal That Forms More Than One Type of Cation

Transition metal-Group 13 element complexes ionic compounds

© 2024 chempedia.info