Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals and Membranes

The binding event could result in the translocation of the metal or some metal complex into the cell interior where interaction with intracellular membranes, enzymes, or transporters (Anner and Moosmayer 1992 Imesch et al. 1992 Stockand et al. 1993) could ensue (Brunder et al. 1988 Chang and Dawson 1988 Skroch et al. 1993). In view of these possibilities, it will clearly be difficult to distinguish primary and secondary effects of metals on cellular transport processes. [Pg.54]


Activity Versus Concentration In describing metallic and membrane indicator electrodes, the Nernst equation relates the measured cell potential to the concentration of analyte. In writing the Nernst equation, we often ignore an important detail—the... [Pg.485]

The cell consists of an indicator and a reference electrode, the latter usually being the calomel or silver-silver chloride type. The potential of the indicator electrode is related to the activities of one or more of the components of the solution and it therefore determines the overall cell potential. Ideally, its response to changes of activity should be rapid, reversible and governed by the Nernst equation. There are two types of indicator electrode which possess the desired characteristics - metallic and membrane. [Pg.657]

Both metallic and membrane electrodes have been used to detect end points in potentiometric titrations involving complex formation. Mercury electrodes are useful for EDTA titrations of cations that form complexes that are less stable than HgY- . See Section 21D-1 for the half-reactions involved and Equation 21-5 for the Nernst expression describing the behavior of the electrode. Hanging mercury drop and thin mercury film electrodes appropriate for EDTA titrations are available from a number of manufacturers. As always, whenever mercury is used in experiments like these, we must take every precaution to avoid spilling it, and it must be stored in a well-ventilated hood or a special cabinet to remove the toxic vapors of the liquid metal. Before working with mercury, be sure to read its Materials Safety Data Sheet (MSDS), and follow all appropriate safety procedures. [Pg.625]

An ideal indicator electrode responds rapidly and reproducibly to changes in activity of the analyie ion. Although no indicator electrode is absolutely specific in its response, a few arc now available that are remarkably selective, fhcrc are iwo types of indicator electrodes metallic and membrane. This section deals with metallic indicator clcctrrxles. [Pg.662]

Concerning the indicator electrodes often it is distinguished between metallic and membrane electrodes. The potential of a metallic electrode is determined by a redox reaction at the interphase electrode/solution. Basically there are three different kinds of metal-based indicator electrodes (Table 1) ... [Pg.1694]

There are several advantages for the use of S-ZrOj as a catalyst support in PEMFC applications. Because of its hydrophilicity, it has been suggested that this type of fuel cell catalyst would be well suited for low-relative humidity conditions and possibly simplify fuel cell components to operate without the use of a humidifier. Due to the proton conductivity across the surface of the material, less Nafion iono-mer needs to be cast to form the TPBs. Platinum utilization increases as the S-ZrOj support acts as both the platinum and proton conductor and better gas diffusion to the catalyst site results from the decreased blockage of Nafion ionomer (Liu et al., 2006a,b). It is beheved that within porous carbon catalyst supports, platinum deposited within the pores may not have proton conductivity due to the perfluorosul-fonated ionomer unahle to penetrate into the pores. Thus, a TPB which is necessary for a catalyst active site will not be formed. Therefore, the S-ZrOj support has an additional benefit over porous carbon material supports in that by using the S-ZrOj as a support for platinum catalysts, the surface of the support can act as a proton conductor and platinum deposited anywhere on the surface of the support will provide immediate access to the electron and proton pathways thereby requiring less Nafion. Thus the use of S-ZrOj in fuel cell MEA components may potentially lower the cost of materials substantially, as the catalytic metals and membrane materials are among the most costly in a PEMFC. However, like most metallic oxides, the downside of their use stems from their relatively low electron conductivity and low surface areas that results in poor platinum dispersion. [Pg.63]

Potentiometric electrodes are divided into two classes metallic electrodes and membrane electrodes. The smaller of these classes are the metallic electrodes. Electrodes of the first kind respond to the concentration of their cation in solution thus the potential of an Ag wire is determined by the concentration of Ag+ in solution. When another species is present in solution and in equilibrium with the metal ion, then the electrode s potential will respond to the concentration of that ion. Eor example, an Ag wire in contact with a solution of Ck will respond to the concentration of Ck since the relative concentrations of Ag+ and Ck are fixed by the solubility product for AgCl. Such electrodes are called electrodes of the second kind. [Pg.532]

Inorganic membranes (29,36) are generaUy more stable than their polymeric counterparts. Mechanical property data have not been definitive for good comparisons. IndustriaUy, tube bundle and honeycomb constmctions predominate with surface areas 20 to 200 m. Cross-flow is generaUy the preferred mode of operation. Packing densities are greater than 1000 /m. Porous ceramics, sintered metal, and metal oxides on porous carbon support... [Pg.154]

Many cellular plastic products are available with different types of protective faces, including composite metal and plastic foils, fiber-reinforced plastic skins, and other coatings. These reduce but do not eliminate the rate of aging. For optimum performance, such membranes must be totally adhered to the foam, and other imperfections such as wrinkles, cuts, holes, and unprotected edges should be avoided because they all contribute to accelerated aging. [Pg.334]

Maleic Anhydride. The ACGIH threshold limit value in air for maleic anhydride is 0.25 ppm and the OSHA permissible exposure level (PEL) is also 0.25 ppm (181). Maleic anhydride is a corrosive irritant to eyes, skin, and mucous membranes. Pulmonary edema (collection of fluid in the lungs) can result from airborne exposure. Skin contact should be avoided by the use of mbber gloves. Dust respirators should be used when maleic anhydride dust is present. Maleic anhydride is combustible when exposed to heat or flame and can react vigorously on contact with oxidizers. The material reacts exothermically with water or steam. Violent decompositions of maleic anhydride can be catalyzed at high temperature by strong bases (sodium hydroxide, potassium hydroxide, calcium hydroxide, alkaU metals, and amines). Precaution should be taken during the manufacture and use of maleic anhydride to minimize the presence of basic materials. [Pg.459]

Ceramic, Metal, and Liquid Membranes. The discussion so far implies that membrane materials are organic polymers and, in fact, the vast majority of membranes used commercially are polymer based. However, interest in membranes formed from less conventional materials has increased. Ceramic membranes, a special class of microporous membranes, are being used in ultrafHtration and microfiltration appHcations, for which solvent resistance and thermal stabHity are required. Dense metal membranes, particularly palladium membranes, are being considered for the separation of hydrogen from gas mixtures, and supported or emulsified Hquid films are being developed for coupled and facHitated transport processes. [Pg.61]

Because membranes appHcable to diverse separation problems are often made by the same general techniques, classification by end use appHcation or preparation method is difficult. The first part of this section is, therefore, organized by membrane stmcture preparation methods are described for symmetrical membranes, asymmetric membranes, ceramic and metal membranes, and Hquid membranes. The production of hollow-fine fiber membranes and membrane modules is then covered. Symmetrical membranes have a uniform stmcture throughout such membranes can be either dense films or microporous. [Pg.61]

On the other hand, Bartsch et al. have studied cation transports using crown ether carboxylic acids, which are ascertained to be effective and selective extractants for alkali metal and alkaline earth metal cations 33-42>. In a proton-driven passive transport system (HC1) using a chloroform liquid membrane, ionophore 31 selectively transports Li+, whereas 32-36 and 37 are effective for selective transport of Na+ and K+, respectively, corresponding to the compatible sizes of the ring cavity and the cation. By increasing the lipophilicity from 33 to 36, the transport rate is gradually... [Pg.46]

Three kinds of equilibrium potentials are distinguishable. A metal-ion potential exists if a metal and its ions are present in balanced phases, e.g., zinc and zinc ions at the anode of the Daniell element. A redox potential can be found if both phases exchange electrons and the electron exchange is in equilibrium for example, the normal hydrogen half-cell with an electron transfer between hydrogen and protons at the platinum electrode. In the case where a couple of different ions are present, of which only one can cross the phase boundary — a situation which may exist at a semiperme-able membrane — one obtains a so called membrane potential. Well-known examples are the sodium/potassium ion pumps in human cells. [Pg.10]

The ceramic membrane has a great potential and market. It represents a distinct class of inorganic membrane. In particular, metallic coated membranes have many industrial applications. The potential of ceramic membranes in separation, filtration and catalytic reactions has favoured research on synthesis, characterisation and property improvement of inorganic membranes because of their unique features compared with other types of membrane. Much attention has focused on inorganic membranes, which are superior to organic ones in thermal, chemical and mechanical stability and resistance to microbial degradation. [Pg.379]


See other pages where Metals and Membranes is mentioned: [Pg.53]    [Pg.53]    [Pg.221]    [Pg.65]    [Pg.502]    [Pg.421]    [Pg.75]    [Pg.69]    [Pg.97]    [Pg.153]    [Pg.154]    [Pg.494]    [Pg.393]    [Pg.49]    [Pg.1600]    [Pg.1600]    [Pg.35]    [Pg.251]    [Pg.71]    [Pg.73]    [Pg.353]    [Pg.419]    [Pg.127]    [Pg.371]    [Pg.422]    [Pg.150]    [Pg.163]    [Pg.147]    [Pg.15]    [Pg.337]   


SEARCH



Membrane metallic

Membranes metallized

Metal Membrane Durability and Selectivity

Metal membranes

Porous Glass and Metal Membranes

© 2024 chempedia.info