Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metallocene Molecular weight distribution

Molecular Weight Distribution. In industry, the MWD of PE resins is often represented by the value of the melt flow ratio (MER) as defined in Table 2. The MER value of PE is primarilly a function of catalyst type. Phillips catalysts produce PE resins with a broad MWD and their MER usually exceeds 100 Ziegler catalysts provide resins with a MWD of a medium width (MFR = 25-50) and metallocene catalysts produce PE resins with a narrow MWD (MFR = 15-25). IfPE resins with especially broad molecular weight distributions are needed, they can be produced either by using special mixed catalysts or in a series of coimected polymerization reactors operating under different reaction conditions. [Pg.369]

Detailed modifications in the polymerisation procedure have led to continuing developments in the materials available. For example in the 1990s greater understanding of the crystalline nature of isotactic polymers gave rise to developments of enhanced flexural modulus (up to 2300 MPa). Greater control of molecular weight distribution has led to broad MWD polymers produced by use of twin-reactors, and very narrow MWD polymers by use of metallocenes (see below). There is current interest in the production of polymers with a bimodal MWD (for explanations see the Appendix to Chapter 4). [Pg.249]

The narrow molecular weight distribution means that the melts are more Newtonian (see Section 8.2.5) and therefore have a higher melt viscosity at high shear rates than a more pseudoplastic material of similar molecular dimensions. In turn this may require more powerful extruders. They are also more subject to melt irregularities such as sharkskin and melt fracture. This is one of the factors that has led to current interest in metallocene-polymerised polypropylenes with a bimodal molecular weight distribution. [Pg.259]

This new edition not only includes information on the newer materials but attempts to explain in modifications to Chapter 2 the basis of metallocene polymerisation. Since it is also becoming apparent that successful development with these polymers involves consideration of molecular weight distributions an appendix to Chapter 2 has been added trying to explain in simple terms such concepts as number and molecular weight averages, molecular weight distribution and in particular concepts such as bi- cmd trimodal distributions which are becoming of interest. [Pg.927]

LLDPE with narrow molecular weight distribution exhibits a lower, a sharper melting point [3], better hot tack and heat seal properties as well as higher clarity and better impact resistance (Fig. 3), tensile strength (Fig. 4) [11], and lower levels of alkane-soluble components. The most distinguishing characteristic of metallocene-based LLDPEs is that they are not restricted by the current immutable property relationships that are... [Pg.156]

Narrow molecular weight distribution, which is characteristic of metallocene-based polyethylene (Fig. 7), causes processing difficulty in certain applications due to increased melt pressure, reduced melt strength, and melt fracture [14,15]. This problem can be overcome by blending the metallocene polymer with other prod-... [Pg.157]

More recent inventions are the metallocene catalysts based on zirconium. They offer more uniform catalyst activity and can give a relatively narrow molecular weight distribution. More importantly, they offer better control over structure and copolymer composition distributions. [Pg.487]

The molecular weight distribution in Fig. 5.3 a) exhibits a most probable molecular weight distribution , which is characteristic of polymers produced by metallocene catalysts. This distribution contains relatively few molecules with either extremely high or low molecular weights. Products made with this type of distribution are relatively difficult to process in the molten state, exhibit modest orientation, and have good impact resistance. [Pg.99]

In practice, product developers often blend two or more resins together in order to obtain a product that has the required melt flow and solid-state characteristics. Thus, we frequently combine metallocene catalyzed linear low density polyethylene, having a most probable molecular weight distribution, with low density polyethylene, having a broad molecular weight distribution. The linear low density polyethylene provides good impact resistance, while the low density polyethylene improves melt flow characteristics. [Pg.99]

How do metallocene catalysts define the molecular weight distribution and tacticity of polypropylene ... [Pg.315]

A half-metallocene iron iodide carbonyl complex Fe(Cp)I(CO)2 was found to induce the living radical polymerization of methyl acrylate and f-bulyl acrylate with an iodide initiator (CH3)2C(C02Et)I and Al(Oi- Pr)3 to provide controlled molecular weights and rather low molecular weight distributions (Mw/Mn < 1.2) [79]. The living character of the polymerization was further tested with the synthesis of the PMA-fc-PS and PtBuA-fi-PS block copolymers. The procedure efficiently provided the desired block copolymers, albeit with low molecular weights. [Pg.47]

Borstar A catalytic process for polymerizing ethylene. Use of two reactors, a loop reactor and a gas-phase reactor, allows better control of molecular weight distribution. The loop reactor operates under super-critical conditions to avoid bubble formation. Either Ziegler-Natta or metallocene catalysts can be used. The first commercial unit was installed in Porvoo, Finland, in 1995. [Pg.43]

A foamable isotactic polypropylene homopolymer is obtained by metallocene catalysis and has a molecular weight distribution and density, which fall within broad ranges. It may be prepared in a multiple stage polymerisation process nsing the same metallocene component in at least two stages. [Pg.48]

Molecular weight distributions in metallocene polymerizations are generally in the range of 2-5. PDI is often broadened at higher polymerization temperatures, which may indicate that more than one type of propagating species is present. In general, the more... [Pg.680]

Covalently attaching molecular catalysts to supports is a method that can minimize catalyst leaching. In 1998, a PS-supported titanocene was prepared by Barrett and de Miguel, which displayed 41 g-PE mmol-Ti h of activity. Soga and co-workers reported a series of poly(siloxane)-supported metallocene catalysts. These supported catalysts combined with MAO were found to have high activity for the (co)polymerization of ethylene, propylene, and ethylene/l-octene, though the reaction products typically displayed broad molecular weight distributions. ... [Pg.726]


See other pages where Metallocene Molecular weight distribution is mentioned: [Pg.411]    [Pg.210]    [Pg.217]    [Pg.156]    [Pg.157]    [Pg.160]    [Pg.161]    [Pg.163]    [Pg.332]    [Pg.186]    [Pg.285]    [Pg.873]    [Pg.14]    [Pg.73]    [Pg.128]    [Pg.307]    [Pg.309]    [Pg.738]    [Pg.32]    [Pg.181]    [Pg.205]    [Pg.4]    [Pg.4]    [Pg.256]    [Pg.260]    [Pg.681]    [Pg.681]    [Pg.701]    [Pg.701]    [Pg.773]    [Pg.781]    [Pg.527]   
See also in sourсe #XX -- [ Pg.71 , Pg.80 , Pg.82 ]




SEARCH



Distribution weight

Molecular distribution

Molecular weight distribution

© 2024 chempedia.info