Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metalated tertiary amines

We have investigated the IR spectra of DBTDL, triethylamine and the 1/1 combination of these compounds respectively (Fig.l). When IR-1 and IR-3 are compared significant modifications in the region of 1700 and 1650 to 1560 cm l are noted and are consistent with metal-tertiary amine interactions probably the breaking of the bridge bond between carboxylate and metal and coordination of the amine to the metal via the nitrogen. Entelis reported similar observations (27) but disregards them when he proposes the structures II and III. [Pg.208]

Alkali metal tertiary amines dithiocarbamate salt catalysts for the preparation of polyisocyanurates [44]. [Pg.147]

Polyisocyanates can initiate tripolymerization reactions in the presence of a catalyst, leading to the formation of strong triisocyanurate cycles [67]. Alkalis, acetates, alcoholates of alkali metals, tertiary amines, and many other substances are efficient catalysts of diisocyanate trimerization [50, 55, 57]. However, many of these catalysts proved to be of low effciency for trimerization of industrial polyisocyanates containing large quantities of impurities. Consequently, two catalysts—an alkaline medium formed by sodium waterglass and a tertiary amine [2,4,6-tri(dimethylaminomethyl)phenol]—were used for the polyisocyanate trimerization process. [Pg.202]

Alkali metals may be replaced by tertiary amines in this reaction (198). [Pg.397]

The reactions are catalyzed by tertiary amines, quaternary ammonium salts, metal salts, and basic ion-exchange resins. The products are difficult to purify and generally contain low concentrations of acryhc acid and some diester which should be kept to a minimum since its presence leads to product instabihty and to polymer cross-linking. [Pg.156]

A number of less hindered monoalkylboranes is available by indirect methods, eg, by treatment of a thexylborane—amine complex with an olefin (69), the reduction of monohalogenoboranes or esters of boronic acids with metal hydrides (70—72), the redistribution of dialkylboranes with borane (64) or the displacement of an alkene from a dialkylborane by the addition of a tertiary amine (73). To avoid redistribution, monoalkylboranes are best used /V situ or freshly prepared. However, they can be stored as monoalkylborohydrides or complexes with tertiary amines. The free monoalkylboranes can be hberated from these derivatives when required (69,74—76). Methylborane, a remarkably unhindered monoalkylborane, exhibits extraordinary hydroboration characteristics. It hydroborates hindered and even unhindered olefins to give sequentially alkylmethyl- and dialkylmethylboranes (77—80). [Pg.310]

The action of redox metal promoters with MEKP appears to be highly specific. Cobalt salts appear to be a unique component of commercial redox systems, although vanadium appears to provide similar activity with MEKP. Cobalt activity can be supplemented by potassium and 2inc naphthenates in systems requiring low cured resin color lithium and lead naphthenates also act in a similar role. Quaternary ammonium salts (14) and tertiary amines accelerate the reaction rate of redox catalyst systems. The tertiary amines form beneficial complexes with the cobalt promoters, faciUtating the transition to the lower oxidation state. Copper naphthenate exerts a unique influence over cure rate in redox systems and is used widely to delay cure and reduce exotherm development during the cross-linking reaction. [Pg.319]

With secondary alkanolamines, aldehydes in the presence of K CO yield di-tertiary amines, which, on distillation, break down into a,P unsaturated amines and secondary amines. With a mono- or dialkanolamine, an alkaU metal cyanide, and an aldehyde or ketone, aminoacetonitriles are formed. [Pg.6]

Nitrile Intermediates. Most quaternary ammonium compounds are produced from fatty nitriles (qv), which are ia turn made from a natural fat or oil-derived fatty acid and ammonia (qv) (Fig. 2) (see Fats AND FATTY oils) (225). The nitriles are then reduced to the amines. A variety of reduciag agents maybe used (226). Catalytic hydrogenation over a metal catalyst is the method most often used on a commercial scale (227). Formation of secondary and tertiary amine side-products can be hindered by the addition of acetic anhydride (228) or excess ammonia (229). In some cases secondary amines are the desired products. [Pg.381]

The nitrogen of aHphatic and aromatic amines is alkylated rapidly by alkyl sulfates yielding the usual mixtures. Most tertiary amines and nitrogen heterocycles are converted to quaternary ammonium salts, unless the nitrogen is of very low basicity, eg, ia tn phenylamine. The position of dimethyl sulfate-produced methylation of several heterocycles with more than one heteroatom has been examined (22). Acyl cyanamides can be methylated (23). Metal cyanates are converted to methyl isocyanate or ethyl isocyanate ia high yields by heating the mixtures (24,25). [Pg.199]

Aliphatic Alcohols and Thiols. Ahphatic alcohols on reaction with chloroformates give carbonates and hydrogen chloride. Frequendy, the reaction proceeds at room temperature without a catalyst or hydrogen chloride acceptor. However, faster reactions and better yields are obtained in the presence of alkaU metals or their hydroxides, or tertiary amines. Reactions of chloroformates with thiols yield monothiolocarbonates (14). [Pg.38]

Phenols. Phenols are unreactive toward chloroformates at room temperature and at elevated temperatures the yields of carbonates are relatively poor (< 10%) in the absence of catalysis. Many catalysts have been claimed in the patent Hterature that lead to high yields of carbonates from phenol and chloroformates. The use of catalyst is even more essential in the reaction of phenols and aryl chloroformates. Among the catalysts claimed are amphoteric metals or thek haUdes (16), magnesium haUdes (17), magnesium or manganese (18), secondary or tertiary amines such as imidazole (19), pyridine, quinoline, picoline (20—22), heterocycHc basic compounds (23) and carbonamides, thiocarbonamides, phosphoroamides, and sulfonamides (24). [Pg.39]

It resembles tetracyanoethylene in that it adds reagents such as hydrogen (31), sulfurous acid (31), and tetrahydrofuran (32) to the ends of the conjugated system of carbon atoms suffers displacement of one or two cyano groups by nucleophilic reagents such as amines (33) or sodiomalononittile (34) forms TT-complexes with aromatic compounds (35) and takes an electron from iodide ion, copper, or tertiary amines to form an anion radical (35,36). The anion radical has been isolated as salts of the formula (TCNQ) where is a metal or ammonium cation, and n = 1, 1.5, or 2. Some of these salts have... [Pg.404]

Cyanoacrylate adhesives cure by anionic polymerization. This reaction is catalyzed by weak bases (such as water), so the adhesives are generally stabilized by the inclusion of a weak acid in the formulation. While adhesion of cyanoacrylates to bare metals and many polymers is excellent, bonding to polyolefins requires a surface modifying primer. Solutions of chlorinated polyolefin oligomers, fran-sition metal complexes, and organic bases such as tertiary amines can greatly enhance cyanoacrylate adhesion to these surfaces [72]. The solvent is a critical component of these primers, as solvent swelling of the surface facilitates inter-... [Pg.460]

Certain metal catalysts, such as tin(IV) salts and tertiary amines, may work synergistically with oxygen to cause oxidative degradation of urethanes [88]. [Pg.805]

The in-out bicyclic amines prepared by Simmons and Park bear a remarkable semblance to the cryptands but lack the binding sites in the bridges. As a result, these molecules interact with electrophiles in a fashion similar to other tertiary amines and generally do not exhibit strong interactions with alkali or alkaline earth metal ions. The in-out bicyclic amines are prepared by reaction of the appropriate acid chlorides and amines in two stages to yield the macrobicyclic amine after reduction of the amidic linkages. A typical amine is shown above as compound 18. [Pg.355]

Reductive amination (Section 22.10) Reaction of ammonia or an amine with an aldehyde or a ketone in the presence of a reducing agent is an effective method for the preparation of primary, secondary, or tertiary amines. The reducing agent may be either hydrogen in the presence of a metal catalyst or sodium cyanoborohy-dride. R, R, and R" may be either alkyl or aryl. [Pg.957]

An interesting appetite suppressant very distantly related to hexahydroamphetamines is somanta-dine (24). The reported synthesis starts with conversion of 1-adamantanecarboxylic acid (20) via the usual steps to the ester, reduction to the alcohol, transformation to the bromide (21), conversion of the latter to a Grignard reagent with magnesium metal, and transformation to tertiary alcohol 22 by reaction with acetone. Displacement to the fomiamide (23) and hydrolysis to the tertiary amine (24) completes the preparation of somantadine [6]. [Pg.4]

Carbodiimides have been prepared by desulfurization of thioureas by metal oxides, by sodium hypochlorite,4 or by ethyl chloroformate in the presence of a tertiary amine by halogena-tion of ureas or thioureas followed by dehydrohalogenation of the N,N -disubstituted carbamic chloride 8 and by dehydration of disubstituted ureas using -toluenesulfonyl chloride and pyridine.7 The method described above is a modification of that of Campbell and Verbanc. ... [Pg.32]

Unsymmetrical as well as symmetrical anhydrides are often prepared by the treatment of an acyl halide with a carboxylic acid salt. The compound C0CI2 has been used as a catalyst. If a metallic salt is used, Na , K , or Ag are the most common cations, but more often pyridine or another tertiary amine is added to the free acid and the salt thus formed is treated with the acyl halide. Mixed formic anhydrides are prepared from sodium formate and an aryl halide, by use of a solid-phase copolymer of pyridine-l-oxide. Symmetrical anhydrides can be prepared by reaction of the acyl halide with aqueous NaOH or NaHCOa under phase-transfer conditions, or with sodium bicarbonate with ultrasound. [Pg.490]

Benzylic quaternary ammonium salts, when treated with alkali metal amides, undergo a rearrangement called the Sommelet-Hauser rearrangementSince the product is a benzylic tertiary amine, it can be further alkylated and the product again subjected to the rearrangement. This process can be continued around the ring until an ortho position is blocked. ... [Pg.877]


See other pages where Metalated tertiary amines is mentioned: [Pg.781]    [Pg.136]    [Pg.26]    [Pg.597]    [Pg.781]    [Pg.136]    [Pg.26]    [Pg.597]    [Pg.21]    [Pg.28]    [Pg.127]    [Pg.957]    [Pg.242]    [Pg.243]    [Pg.297]    [Pg.236]    [Pg.169]    [Pg.176]    [Pg.401]    [Pg.218]    [Pg.37]    [Pg.38]    [Pg.104]    [Pg.536]    [Pg.624]    [Pg.820]    [Pg.305]    [Pg.922]    [Pg.279]    [Pg.73]    [Pg.257]    [Pg.125]    [Pg.369]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Amines metallation

Amines tertiary

Metal-amine

Metalation amines

© 2024 chempedia.info