Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals plastic deformation

Figure 2. Schematic of the cross section through a number stamped into metal. Removal of metal down to level (a) results in incomplete obliteration although the number may no longer be readily visible because metal has been smeared into the groove forming the number recovery is easiest in this case. Removal of metal to level (b) leaves behind plastically deformed material this is the situation for which recovery techniques, e.g., etching, can bring out the obliterated numbers. Removal of metal down to level (c) removes all metal plastically deformed during the stamping of the number in this case, recovery is impossible. Figure 2. Schematic of the cross section through a number stamped into metal. Removal of metal down to level (a) results in incomplete obliteration although the number may no longer be readily visible because metal has been smeared into the groove forming the number recovery is easiest in this case. Removal of metal to level (b) leaves behind plastically deformed material this is the situation for which recovery techniques, e.g., etching, can bring out the obliterated numbers. Removal of metal down to level (c) removes all metal plastically deformed during the stamping of the number in this case, recovery is impossible.
Linear and planar densities are important considerations relative to the process of slip— that is, the mechanism by which metals plastically deform (Section 7.4). Slip occurs on the most densely packed crystallographic planes and, in those planes, along directions having the greatest atomic packing. [Pg.82]

Furthermore, the effect of a stress raiser is more significant in brittle than in ductile materials. For a ductile metal, plastic deformation ensues when the maximum stress exceeds the yield strength. This leads to a more uniform distribution of stress in the vicinity of the stress raiser and to the development of a maximum stress concentration factor less than the theoretical value. Such yielding and stress redistribution do not occur to any appreciable extent around flaws and discontinuities in brittle materials therefore, essentially the theoretical stress concentration results. [Pg.259]

In addition, on the basis of analogous specimens, the accumulation of damage and plastic deformation of metal structure were simulated. These results provide the possibility to obtain the prediction charts of the metal work s residual resource. [Pg.29]

Traditionally, production of metallic glasses requites rapid heat removal from the material (Fig. 2) which normally involves a combination of a cooling process that has a high heat-transfer coefficient at the interface of the Hquid and quenching medium, and a thin cross section in at least one-dimension. Besides rapid cooling, a variety of techniques are available to produce metallic glasses. Processes not dependent on rapid solidification include plastic deformation (38), mechanical alloying (7,8), and diffusional transformations (10). [Pg.336]

A hardness indentation causes both elastic and plastic deformations which activate certain strengthening mechanisms in metals. Dislocations created by the deformation result in strain hardening of metals. Thus the indentation hardness test, which is a measure of resistance to deformation, is affected by the rate of strain hardening. [Pg.463]

Two approaches have been taken to produce metal-matrix composites (qv) incorporation of fibers into a matrix by mechanical means and in situ preparation of a two-phase fibrous or lamellar material by controlled solidification or heat treatment. The principles of strengthening for alloys prepared by the former technique are well estabUshed (24), primarily because yielding and even fracture of these materials occurs while the reinforcing phase is elastically deformed. Under these conditions both strength and modulus increase linearly with volume fraction of reinforcement. However, the deformation of in situ, ie, eutectic, eutectoid, peritectic, or peritectoid, composites usually involves some plastic deformation of the reinforcing phase, and this presents many complexities in analysis and prediction of properties. [Pg.115]

A series of events can take place in response to the thermal stresses (/) plastic deformation of the ductile metal matrix (sHp, twinning, cavitation, grain boundary sliding, and/or migration) (2) cracking and failure of the brittle fiber (5) an adverse reaction at the interface and (4) failure of the fiber—matrix interface (17—20). [Pg.200]

Case Hardening by Surface Deformation. When a metaUic material is plastically deformed at sufficiently low temperature, eg, room temperature for most metals and alloys, it becomes harder. Thus one method to produce a hard case on a metallic component is to plastically deform the surface region. This can be accomplished by a number of methods, such as by forcing a hardened rounded point onto the surface as it is moved. A common method is to impinge upon the surface fine hard particles such as hardened steel spheres (shot) at high velocity. This process is called shot... [Pg.215]

When plastic deformation occurs, crystallographic planes sHp past each other. SHp is fackitated by the unique atomic stmcture of metals, which consists of an electron cloud surrounding positive nuclei. This stmcture permits shifting of atomic position without separation of atomic planes and resultant fracture. The stress requked to sHp an atomic plane past an adjacent plane is extremely high if the entire plane moves at the same time. Therefore, the plane moves locally, which gives rise to line defects called dislocations. These dislocations explain strain hardening and many other phenomena. [Pg.230]

Machining of metals involves extensive plastic deformation (shear strain of ca 2—8) of the work material in a narrow region ahead of the tool. High tool temperatures (ca 1000°C) and freshly generated, chemically active surfaces (underside of the chip and the machined surface) that interact extensively with the tool material, result in tool wear. There are also high mechanical and thermal stresses (often cycHc) on the tool (3). [Pg.194]

Elastic Behavior. Elastic deformation is defined as the reversible deformation that occurs when a load is appHed. Most ceramics deform in a linear elastic fashion, ie, the amount of reversible deformation is a linear function of the appHed stress up to a certain stress level. If the appHed stress is increased any further the ceramic fractures catastrophically. This is in contrast to most metals which initially deform elastically and then begin to deform plastically. Plastic deformation allows stresses to be dissipated rather than building to the point where bonds break irreversibly. [Pg.317]

Rules for the design of shells of revolution under internal pressure differ from the Division 1 rules, particularly the rules for formed heads when plastic deformation in the knuckle area is the failure criterion. Shells of revolution for external pressure are determined on the same criterion, including safety factors, as in Division 1. Reinforcement for openings uses the same area-replacement method as Division 1 however, in many cases the reinforcement metal must be closer to the opening centerline. [Pg.1025]

The gouge sites had a bright metallic luster and various shapes (Figs. 11.22 and 11.23). Microstructural examinations of the gouged regions revealed that plastic deformation of the metal had not occurred. [Pg.259]

This mechanism of crack inhibition is almost unique among ceramic systems, which do not undergo the plastic deformation under stress which is found in metallic systems (Figure 7.3). [Pg.240]

When metals are rolled or forged, or drawn to wire, or when polymers are injection-moulded or pressed or drawn, energy is absorbed. The work done on a material to change its shape permanently is called the plastic work- its value, per unit volume, is the area of the cross-hatched region shown in Fig. 8.9 it may easily be found (if the stress-strain curve is known) for any amount of permanent plastic deformation, e. Plastic work is important in metal- and polymer-forming operations because it determines the forces that the rolls, or press, or moulding machine must exert on the material. [Pg.83]

A. H. Cottrell, The Mechanical Properties of Matter, Wiley, 1964, Chap. 9. R. W. K. Honeycombe, The Plastic Deformation of Metals, Arnold, 1968,... [Pg.110]

Let us first of all look at what happens when we load a cracked piece of a ductile metal - in other words, a metal that can flow readily to give large plastic deformations (like pure copper or mild steel at, or above, room temperature). If we load the material sufficiently, we can get fracture to take place starting from the crack. If you examine the... [Pg.140]

A metal bar of width w is compressed between two hard anvils as shown in Fig. Al.l. The third dimension of the bar, L, is much greater than zu. Plastic deformation takes place as a result of shearing along planes, defined by the dashed lines in the figure, at a shear stress k. Find an upper bound for the load F when (a) there is no friction between anvils and bar, and (b) there is sufficient friction to effectively weld the anvils to the bar. Show that the solution to case (b) satisfies the general formula... [Pg.281]

When metals are deformed plastically at room temperature the dislocation density goes up enormously (to =10 m ). Each dislocation has a strain energy of about Gb /2 per unit length and the total dislocation strain energy in a cubic metre of deformed metal is about 2 MJ, equiva-lent to 15 J mol k When cold worked metals are heated to about 0.6T new strain-free grains nucleate and grow to consume all the cold-worked metal. This is called - for obvious reasons - recrystallisation. Metals are much softer when they have been recrystallised (or "annealed"). And provided metals are annealed often enough they can be deformed almost indefinitely. [Pg.55]

In metals, inelastic deformation occurs at the crack tip, yielding a plastic zone. Smith [34] has argued that the elastic stress intensity factor is adequate to describe the crack tip field condition if the inelastic zone is limited in size compared with the near crack tip field, which is then assumed to dominate the crack tip inelastic response. He suggested that the inelastic zone be 1/5 of the size of the near crack tip elastic field (a/10). This restriction is in accordance with the generally accepted limitation on the maximum size of the plastic zone allowed in a valid fracture toughness test [35,36]. For the case of crack propagation, the minimum crack size for which continuum considerations hold should be at least 50 x (r ,J. [Pg.495]


See other pages where Metals plastic deformation is mentioned: [Pg.517]    [Pg.840]    [Pg.1102]    [Pg.517]    [Pg.840]    [Pg.1102]    [Pg.427]    [Pg.340]    [Pg.340]    [Pg.341]    [Pg.331]    [Pg.138]    [Pg.182]    [Pg.187]    [Pg.201]    [Pg.201]    [Pg.281]    [Pg.383]    [Pg.207]    [Pg.224]    [Pg.395]    [Pg.190]    [Pg.209]    [Pg.312]    [Pg.190]    [Pg.201]    [Pg.79]    [Pg.125]    [Pg.142]    [Pg.171]    [Pg.48]    [Pg.49]    [Pg.49]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Deformability plastic

Deformation plasticity

Deformed plastics

Metal deformation

Metal plasticity

Metal plasticization

Metalized plastics

Metallized Plastics

Metallizing plastic

Plastic deformation

Plastic deformity

Plastics metals

Plastics, metallization

© 2024 chempedia.info