Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal oxide overlayers, surface

WILLIAMS ET AL. Surface Characterization of Metal Oxide Overlayers... [Pg.193]

Recent studies of supported vanadium oxide catalysts have revealed that the vanadium oxide component is present as a two-dimensional metal oxide overlayer on oxide supports (1). These surface vanadium oxide species are more selective than bulk, crystalline V2O5 for the partial oxidation of hydrocarbons (2). The molecular structures of the surface vanadium oxide species, however, have not been resolved (1,3,4). A characterization technique that has provided important information and insight into the molecular structures of surface metal oxide species is Raman spectroscopy (2,5). The molecular structures of metal oxides can be determined from Raman spectroscopy through the use of group theory, polarization data, and comparison of the... [Pg.317]

In the first case where metal surfaces provide active oxygen species to the support contact structure is not critical. The second case is often observed when supported metal catalysts are prepared by coprecipitation or sol-gel methods. Noble metals whose oxides are more stable than Pt oxides such as Pd and Ir are more readily buried in the bulk of metal oxide supports, and the metal oxide overlayers of a thickness of about a few monolayers are modified in their electronic and redox properties by underlying noble metal nanoparticles to become active at lower temperatures. [Pg.676]

The nature of supported oxides and of the support plays a critical role in the partial oxidation of hydrocarbons since the support is not only providing a high surface area, but also dispersing the oxide. The interaction between the metal oxide overlayer and the imderlying support similarly determines the performance of the catalyst, which may also be affected by the exposed sites of the support. To fully understand these effects, a series of supported vanadium oxide catalysts at monolayer and submonolayer coverage have been prepared. The monolayer coverage was determined hy Raman spectroscopy and X -ray photoelectron spectroscopy. The activity of the supported vanadium oxide catalysts is determined by the specific support and surface vanadia coverage. [Pg.295]

Titanium oxide monolayer on y-AljOj is a potential support for noble metals [1-4]. Many studies have shown that two-dimensional transition metal oxide overlayers are formed when one metal oxide (Vj05, Nb205, MoOj, etc.) is deposited on an oxide support (AljOj, TiO, etc.) [5-7]. The influence of the molecular structures of surface metal oxide species on the catalytic properties of supported metal oxide catalyst has been examined [8-9]. It has been demonstrated that the formation and location of the surface metal oxide species are controlled by the surface hydroxyl chemistry. Moreover, thin-layer oxide catalysts have been synthesized on alumina by impregnation technique with alkoxide precursor [10]. It has been found for titanium oxide, by using Raman spectroscopy, that a monolayer structure is formed for titanium contents below 17% and that polymeric titanium oxide surface species only posses Ti-O-Ti bonds and not Ti=0 bonds. Titanium is typically ionic in its oxy-compounds, and while it can exist in lower oxidation states, the ionic form TF is generally observed in octahedral coordination [11-12]. However, there is no information available about the Ti coordination and structure of this oxide in a supported monolayer. In this work we have studied the structural evolution of the titanium oxy-hydroxide overlayer obtained from alkoxide precursor, during calcination. [Pg.1059]

The catalysis science of supported metal oxide catalysts, especially supported vanadia catalysts, has lagged behind their industrial development. In the 1970s, two models were proposed for the active metal oxide component a three-dimensional microcrystalline phase (e.g., small metal oxide crystallites) or a two-dimensional surface metal oxide overlayer (e.g., surface metal oxide monolayer). In the 1980s, many studies demonstrated that the active metal oxide components were primarily present as two-dimensional surface metal oxide overlayers, below monolayer coverage, and that the surface metal oxide overlayers control the catalytic properties of supported metal oxide catalysts. The synergistic interaction between the surface vanadia overlayer and the underlying oxide support prompted Ceilings to state. . that neither the problem of the structure of suppored vanadium oxide nor that of the special role of TiOa as a support have definitely been solved. Further work on these and related topics is certainly necessary. In more recent years, many fundamental studies have focused on the molecular structural determination of the surface vanadia phase and to a lesser extent the molecular structure-reactivity relationships of supported vanadia catalysts. " ... [Pg.39]

As a furtlier example for tire meaning of ex situ investigations of emersed electrodes witli surface analytical teclmiques, results obtained for tire double layer on poly crystalline silver in alkaline solutions are presented in figure C2.10.3. This system is of scientific interest, since tliin silver oxide overlayers (tliickness up to about 5 nm) are fonned for sufficiently anodic potentials, which implies tliat tire adsorjDtion of anions, cations and water can be studied on tire clean metal as well as on an oxide covered surface [55, 56]. For tire latter situation, a changed... [Pg.2751]

M. W. Roberts, The nature and reactivity of chemisorbed oxygen and oxide overlayers at metal surfaces as revealed by photoelectron spectroscopy, in Structure and Reactivity of Surfaces, ed. C. Morterra, A. Zechina and G. Costa, Elsevier, Amsterdam, 1989, p. 787. [Pg.178]

Oxide Catalysts - Under appropriate conditions a bulk metal will form an oxide overlayer and this layer will be responsible for governing the catalytic behaviour. In a similar manner a bulk oxide can undergo reduction with a formation of a metallic surface layer. Such behaviour can be responsible for rate oscillations or hysteresis in reaction rate and is important when considering the catalytic behaviour of bulk oxides. [Pg.24]

In contrast to the minimal activity in infrared reflection studies the technique of inelastic electron tunneling spectroscopy (IETS) recently has contributed a large amount of information on monolayer adsorption of organic molecules on smooth metal oxide surfaces,Q),aluminum oxide layers on evaporated aluminum. These results indicate that a variety of organic molecules with acidic hydrogens, such as carboxylic acids and phenols chemisorb on aluminum Oxide overlayers by proton dissociation - 1 — and that monolayer coverage can be attained quite repro-ducibly by solution doping techniques. - The IETS technique is sensitive to both infrared and Raman modes. — However, almost no examples exist in which Raman il and or infrared spectra have been taken for an adsorbate/substrate system for which IETS spectra have been observed. [Pg.38]


See other pages where Metal oxide overlayers, surface is mentioned: [Pg.129]    [Pg.129]    [Pg.30]    [Pg.39]    [Pg.187]    [Pg.191]    [Pg.132]    [Pg.255]    [Pg.261]    [Pg.254]    [Pg.816]    [Pg.819]    [Pg.822]    [Pg.3]    [Pg.576]    [Pg.577]    [Pg.52]    [Pg.54]    [Pg.129]    [Pg.156]    [Pg.148]    [Pg.149]    [Pg.151]    [Pg.151]    [Pg.152]    [Pg.175]    [Pg.179]    [Pg.415]    [Pg.261]    [Pg.41]    [Pg.177]    [Pg.178]    [Pg.51]    [Pg.52]    [Pg.306]    [Pg.37]    [Pg.48]    [Pg.33]    [Pg.42]    [Pg.44]   


SEARCH



Metal overlayers

Metal oxide overlayers, surface characterization

Metal oxide surfaces

Metal oxide surfaces, oxidation

OVERLAYING

Overlay

Overlayers

Surface metallic oxide

Surface overlayers

© 2024 chempedia.info