Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercuration ketones

Mercuric perchlorate has been shown to attack cyclohexanone, the reaction being zero-order in the salt and the rate being that of enolisation with a primary kinetic isotope effect of the same magnitude, to give a mercurated ketone ... [Pg.348]

Exchange reaction can also be carried out by treating bis(trimethylstannyl) sulfide (79) with the a-mercurated ketone (80) to yield the enol stannyl ether (81) and its C-isomer7 Direct reaction of carbonyl compounds with trialkylstannylamines can also give enol stannyl ethers. An example is the preparation of compound (82 Scheme 27). °... [Pg.609]

Mercury(II) compounds are less effective as catalysts for Cope and oxy-Cope rearrangements777- 783, 84. Treatment of tertiary alcohol 14 with stoichiometric amounts of mereury(II) trilluoroacetate primarily leads to a mercurated ketone 15, from which the mercury is removed by sodium borohydride reduction, 85. The same overall result is obtained by using catalytic amounts of mercury(II) trifluoroacetate in the presence of an excess of lithium tri-fluoroacetate783. [Pg.260]

The first step in the mercuric-ion-catalyzed hydration of an alkyne is formation of a cyclic mercurinium ion. (Two of the electrons in mercury s filled 5d atomic orbital are shown.) This should remind you of the cyclic bromonium and mercurinium ions formed as intermediates in electrophilic addition reactions of alkenes (Sections 4.7 and 4.8). In the second step of the reaction, water attacks the most substituted carbon of the cyclic intermediate (Section 4.8). Oxygen loses a proton to form a mercuric enol, which immediately rearranges to a mercuric ketone. Loss of the mercuric ion forms an enol, which rearranges to a ketone. Notice that the overall addition of water follows both the general rule for electrophilic addition reactions and Markovnikov s rule The electrophile (H in the case of Markovnikov s rule) adds to the sp carbon bonded to the greater number of hydrogens. [Pg.247]

Methoxymercuration of diphenylacetylene by mercury(II) acetate in methanol results in a mixture of geometrical isomers 375 and 376. Internal aliphatic acetylenes yield mercurated ketones 2-nonyne, for example, gives a mixture of 377 and 378 2-heptyne behaves in an analogous fashion. The reaction of mercury(II) thiocyanate with terminal alkynes affords 379 (R = Pr, Bu, -Bu, hexyl or Ph), which are converted into unsaturated isothiocyanates 380 by acidolysis. ... [Pg.332]

The protonated OH group loses a proton to form a mercuric enol, which immediately tautomerizes to a mercuric ketone. [Pg.312]

Strike got the journal article for this recipe as literature citation used in the original Wacker oxidation Strike used for Method 2. In it both mercuric acetate, and to an extent, lead acetate produced ketones as described. Someone-Who-ls-Not-Strike also got a certain ketone. But maybe they were lucky or just plain wrong. Most people on Strike s site say this mercuric acetate thing... [Pg.89]

Terminal alkyne anions are popular reagents for the acyl anion synthons (RCHjCO"). If this nucleophile is added to aldehydes or ketones, the triple bond remains. This can be con verted to an alkynemercury(II) complex with mercuric salts and is hydrated with water or acids to form ketones (M.M.T. Khan, 1974). The more substituted carbon atom of the al-kynes is converted preferentially into a carbonyl group. Highly substituted a-hydroxyketones are available by this method (J.A. Katzenellenbogen, 1973). Acetylene itself can react with two molecules of an aldehyde or a ketone (V. jager, 1977). Hydration then leads to 1,4-dihydroxy-2-butanones. The 1,4-diols tend to condense to tetrahydrofuran derivatives in the presence of acids. [Pg.52]

The isoflavone 406 is prepared by the indirect a-phenylation of a ketone by reaction of phenylmercury(II) chloride with the enol acetate 405, prepared from 4-chromanone[371]. A simple synthesis of pterocarpin (409) has been achieved based on the oxypalladation of the oriho-mercurated phenol derivative 408 with the cyclic alkene 407[372,373]. [Pg.80]

Pd(II) salts promote the carbonylation of organomercury compounds. Reaction of phenylmercury chloride and PdCh under CO pressure affords benzophenone (429)[387]. Both esters and ketones are obtained by the carbonylation of furylmercury(Il) chloride in alcohol[388]. Although the yields are not satisfactory, esters are obtained by the carbonylation of aryl- and alkylmercuryfll) chlorides[389,390]. One-pot catalytic carbonylation of thiophene, furan, and pyrrole (430) takes place at the 2-position via mercuration and transmetallation by the use of PdCb, Hg(N03), and CuCl2[391]. [Pg.83]

Thallation of aromatic compounds with thallium tris(trifluoroacetate) proceeds more easily than mercuration. Transmetallation of organothallium compounds with Pd(II) is used for synthetic purposes. The reaction of alkenes with arylthallium compounds in the presence of Pd(Il) salt gives styrene derivatives (433). The reaction can be made catalytic by use of CuCl7[393,394], The aryla-tion of methyl vinyl ketone was carried out with the arylthallium compound 434[395]. The /9-alkoxythallium compound 435, obtained by oxythallation of styrene, is converted into acetophenone by the treatment with PdCh[396]. [Pg.83]

Biacetyl is produced by the dehydrogenation of 2,3-butanediol with a copper catalyst (290,291). Prior to the availabiUty of 2,3-butanediol, biacetyl was prepared by the nitrosation of methyl ethyl ketone and the hydrolysis of the resultant oxime. Other commercial routes include passing vinylacetylene into a solution of mercuric sulfate in sulfuric acid and decomposing the insoluble product with dilute hydrochloric acid (292), by the reaction of acetal with formaldehyde (293), by the acid-cataly2ed condensation of 1-hydroxyacetone with formaldehyde (294), and by fermentation of lactic acid bacterium (295—297). Acetoin [513-86-0] (3-hydroxy-2-butanone) is also coproduced in lactic acid fermentation. [Pg.498]

Many mercury compounds are labile and easily decomposed by light, heat, and reducing agents. In the presence of organic compounds of weak reducing activity, such as amines (qv), aldehydes (qv), and ketones (qv), compounds of lower oxidation state and mercury metal are often formed. Only a few mercury compounds, eg, mercuric bromide/77< 5 7-/7, mercurous chloride, mercuric s A ide[1344-48-5] and mercurous iodide [15385-57-6] are volatile and capable of purification by sublimation. This innate lack of stabiUty in mercury compounds makes the recovery of mercury from various wastes that accumulate with the production of compounds of economic and commercial importance relatively easy (see Recycling). [Pg.112]

Dimethyl ketals and enol ethers are stable to the conditions of oxime formation (hydroxylamine acetate or hydroxylamine hydrochloride-pyridine). Thioketals and hemithioketals are cleaved to the parent ketones by cadmium carbonate and mercuric chloride. Desulfurization of thioketals with Raney nickel leads to the corresponding methylene compounds, while thioenol ethers give the corresponding olefin. In contrast, desulfurization of hemithioketals regenerates the parent ketone. ... [Pg.385]

A rather special procedure for the preparation of 21-hydroxy-20-ketopreg-nanes starts with the 17a-ethoxyethynyl-17 -hydroxy steroids described earlier. Free radical addition of ethanethiol to the triple bond, followed by acid-catalyzed hydrolysis and dehydration gives the 20-thioenol ether 21-aldehyde. This can be reduced with lithium aluminum hydride to the C-21 alcohol and then hydrolyzed to the C-20 ketone in the presence of mercuric chloride. The overall yield, without isolation of intermediates, is in the order of 50% ... [Pg.212]

Bohlmann (207) reported the reaction of /I -dehydroquinolizidine with methyl vinyl ketone and with propargyl aldehyde forming a partially saturated derivative of julolidine 135 and julolidine (136), respectively. Compound 135 can be prepared also by mercuric acetate dehydrogenation of ketone 137, which is formed by condensation of 1-bromoethylquinolizi-dine with ethyl acetoacetate (Scheme 11). [Pg.283]

Vinylic halides are unreactive (pp. 428, 433), but they can be hydrolyzed to ketones at room temperature with mercuric trifluoroacetate, or with mercuric acetate... [Pg.463]

Symmetrical ketones can be prepared in good yields by the reaction of organo-mercuric halides with dicobalt octacarbonyl in THF, or with nickel carbonyl in DMF or certain other solvents. The R group may be aryl or alkyl. However, when R is alkyl, rearrangements may intervene in the C02(CO)g reaction, though the Ni(CO)4 reaction seems to be free from such rearrangements. Divinylic ketones... [Pg.800]

The hydration of triple bonds is generally carried out with mercuric ion salts (often the sulfate or acetate) as catalysts. Mercuric oxide in the presence of an acid is also a common reagent. Since the addition follows Markovnikov s rule, only acetylene gives an aldehyde. All other triple-bond compounds give ketones (for a method of reversing the orientation for terminal alkynes, see 15-16). With allqmes of the form RC=CH methyl ketones are formed almost exclusively, but with RC=CR both possible products are usually obtained. The reaction can be conveniently carried out with a catalyst prepared by impregnating mercuric oxide onto Nafion-H (a superacidic perfluorinated resinsulfonic acid). ... [Pg.995]

Triple bonds can be monohydroborated to give vinylic boranes, which can be reduced with carboxylic acids to cis alkenes or oxidized and hydrolyzed to aldehydes or ketones. Terminal alkynes give aldehydes by this method, in contrast to the mercuric or acid-catalyzed addition of water discussed at 15-4. However, terminal alkynes give vinylic boranes (and hence aldehydes) only when treated with a hindered borane such as 47, 48, or catecholborane (p. 798)," or with BHBr2—SMe2. The reaction between terminal alkynes and BH3 produces 1,1-... [Pg.1015]

The most synthetically valuable method for converting alkynes to ketones is by mercuric ion-catalyzed hydration. Terminal alkynes give methyl ketones, in accordance with the Markovnikov rule. Internal alkynes give mixtures of ketones unless some structural feature promotes regioselectivity. Reactions with Hg(OAc)2 in other nucleophilic solvents such as acetic acid or methanol proceed to (3-acetoxy- or (3-methoxyalkenylmercury intermediates,152 which can be reduced or solvolyzed to ketones. The regiochemistry is indicative of a mercurinium ion intermediate that is opened by nucleophilic attack at the more positive carbon, that is, the additions follow the Markovnikov rule. Scheme 4.8 gives some examples of alkyne hydration reactions. [Pg.335]

To obtain an N-substituted amine reflux 0.1M ketone, 17 g aluminum filings or foil, 50 ml ethanol, 40 ml 30% aqueous n-butylamine (or other amine), and 0.5 g of mercuric chloride for 3 hours. Cool and pour on 500 g crushed ice and 200 ml 10% KOH. Extract 3 times with ether and dry, evaporate in vacuum (or wash combined ether layers 2 times with 10% HCI, basify acid extract with 15% NaOH and extract 3 times with ether and dry, evaporate in vacuum) to get the n-butyl-amine (or other amine). [Pg.106]

Addition of l,3-bis(methylthio)allyllithium to aldehydes, ketones, and epoxides followed by mercuric ion-promoted hydrolysis furnishes hydroxyalkyl derivatives of acrolein5 that are otherwise available in lower yield by multistep procedures. For example, addition of 1,3-bis-(methylthio)allyllithium to acetone proceeds in 97% yield to give a tertiary alcohol that is hydrolyzed with mercuric chloride and calcium carbonate to saturated aldehyde.8 Similarly, addition of l,3-bis(methylthio)allyl-lithium to an epoxide, acetylation of the hydroxyl group, and hydrolysis with mercuric chloride and calcium carbonate provides a 5-acetoxy-a,/ -unsaturatcd aldehyde,6 as indicated in Table I. Cyclic cis-epoxides give aldehydes in which the acetoxy group is trans to the 3-oxopropenyl group. [Pg.84]

Boron trifluoride etherate, co-catalyst, 53, 30, 32 a-Bromination, selective of aralkyl ketone, 53, 111 Bromine, with 3-chlorocyclo-butanecarboxylic acid and mercuric oxide to give 1-bromo-3-chlorocyclobutane, 51, 106... [Pg.126]

Under the catalysis of mercuric oxide and boron trifluoride-diethyl ether, the reaction of methanol with 1,2-hexadiene afforded 2,2-dimethoxyhexane [6]. Hydration with sulfuric acid led to methyl n-butyl ketone [6],... [Pg.596]


See other pages where Mercuration ketones is mentioned: [Pg.569]    [Pg.197]    [Pg.2013]    [Pg.247]    [Pg.108]    [Pg.383]    [Pg.84]    [Pg.150]    [Pg.95]    [Pg.245]    [Pg.801]    [Pg.801]    [Pg.923]    [Pg.995]    [Pg.373]   


SEARCH



Tin, sulfidobis reaction with a-mercurated ketones

Tin, sulfidobis reaction with a-mercurated ketones preparation of enol stannyl ethers

© 2024 chempedia.info