Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes Resins

This review summarizes the recent works on syntheses of solid superacids and their catalytic action, including Lewis acids and liquid superacids in the solid state, as discussed in Sections Il-IV. Sections VI and VII describe new types of solid superacids we have studied in this decade sulfate-supported metal oxides and tungsten or molybdenum oxide supported on zirconia. Perfluorinated sulfonic acid, based on the acid form of DuPont s Nafion brand ion membrane resin, is also gaining interest as a solid superacid catalyst Nafion-H-catalyzed reactions are reviewed in Section V. [Pg.167]

A convenient solid of perfluorinated-sulfonic acid can be made readily from DuPont s commercially available Nafion brand ion membrane resins. Powder granules of the 1200-EW polymer, Nafion 501, have been used most frequently in catalytic applications the price in the K+ form of the perfluorosulfonic salt, 501X, was 650/kg in 1981. Because only the potassium salt derivative is commercially available, the salt is converted to the free sulfonic acid by treatment with mineral acid. A standard procedure for the conversion is described below. This procedure also serves to regenerate the resin in various catalytic cycles. [Pg.174]

ED has been also extensively studied as a possible way for removing F from water. Using model NaF salt solutions, it has been reported that ED is most effective only if F is either the single anionic specie in the water or is present in great excess (Kabay et al., 2008). This situation is, however, rather unlikely to occur in natural waters, which as a rule contain various ionic species at higher levels than the F level. Especially problematic is chloride, because due to the anion-exchange membrane resin preference for Cl over F , any presence of chloride would reduce the ED process efficiency for F removal from water streams. [Pg.131]

Equation (13.18) indicates that lower overall EDI module resistance will entail a lower voltage in order to pass a fixed amount of current through the module. The overall resistance is equal to the sum of the individual resistances, just as is the case in the flow of electric current through a series of resistances. The overall resistance of an EDI module is equal to the sum of that offered by individual membranes, resins, concentrate stream, anolyte, and catholyte at a given feed water temperature and ionic composition. [Pg.389]

TABLE 21.1 System Performance of Typical Membrane Resin Degasing Bin Recovery Unit (1999 data)... [Pg.569]

The ability of living organisms to differentiate between the chemically similar sodium and potassium ions must depend upon some difference between these two ions in aqueous solution. Essentially, this difference is one of size of the hydrated ions, which in turn means a difference in the force of electrostatic (coulombic) attraction between the hydrated cation and a negatively-charged site in the cell membrane thus a site may be able to accept the smaller ion Na (aq) and reject the larger K (aq). This same mechanism of selectivity operates in other ion-selection processes, notably in ion-exchange resins. [Pg.124]

BMI/Epoxy resins [COMPOSITE MATERIALS - POLYTffiR-MATRM - THERMOSETS] (Vol 7) Electrically charged membrane... [Pg.354]

Silica membranes Silica-PDMS Silica-phenolic resin... [Pg.886]

If acetal resins are processed at temperatures substantially above those recommended for the particular grade, minor amounts of formaldehyde may be Hberated. Formaldehyde (qv) is a colorless, lacrimatory gas with a pungent odor and is intensely irritating to mucous membranes. The human nose is sensitive to concentrations in the range of 0.1 to 0.5 ppm. The current threshold limit value for formaldehyde is 1 ppm. [Pg.60]

Removal of brine contaminants accounts for a significant portion of overall chlor—alkali production cost, especially for the membrane process. Moreover, part or all of the depleted brine from mercury and membrane cells must first be dechlorinated to recover the dissolved chlorine and to prevent corrosion during further processing. In a typical membrane plant, HCl is added to Hberate chlorine, then a vacuum is appHed to recover it. A reducing agent such as sodium sulfite is added to remove the final traces because chlorine would adversely react with the ion-exchange resins used later in the process. Dechlorinated brine is then resaturated with soHd salt for further use. [Pg.502]

Miscellaneous Applications. Ben2otrifluoride derivatives have been incorporated into polymers for different appHcations. 2,4-Dichloroben2otrifluoride or 2,3,5,6-tetrafluoroben2otrifluoride [651-80-9] have been condensed with bisphenol A [80-05-7] to give ben2otrifluoride aryl ether semipermeable gas membranes (336,337). 3,5-Diaminoben2otrifluoride [368-53-6] and aromatic dianhydrides form polyimide resins for high temperature composites (qv) and adhesives (qv), as well as in the electronics industry (338,339). [Pg.333]

In other areas, POD has been used to improve the wear resistance of a mbber latex binder by incorporation of 25% of Oksalon fibers. Heat-resistant laminate films, made by coating a polyester film with POD, have been used as electrical insulators and show good resistance to abrasion and are capable of 126% elongation. In some instances, thin sheets of PODs have been used as mold release agents. For this appHcation a resin is placed between the two sheets of POD, which is then pressed in a mold, and the sheets simply peel off from the object and mold after the resin has cured. POD-based membranes exhibit salt rejection properties and hence find potential as reverse osmosis membranes in the purification of seawater. PODs have also been used in the manufacturing of electrophotographic plates as binders between the toner and plate. These improved binders produce sharper images than were possible before. [Pg.535]

Fig. 10. Composite hoUow-fiber membranes (a) polysulfone boUow fiber coated witb fiiran resin. A and B denote fiiran resin surface and porous support, respectively (b) cross section of composite boUow fiber (PEI/TDI coated on polysulfone matrix). C, D, and E denote tightly cross-linked surface, "gutter" gel layer, and porous support, respectively. Both fibers were developed for reverse osmosis appHcation (15). Fig. 10. Composite hoUow-fiber membranes (a) polysulfone boUow fiber coated witb fiiran resin. A and B denote fiiran resin surface and porous support, respectively (b) cross section of composite boUow fiber (PEI/TDI coated on polysulfone matrix). C, D, and E denote tightly cross-linked surface, "gutter" gel layer, and porous support, respectively. Both fibers were developed for reverse osmosis appHcation (15).
PEI derivatives have proven to be effective carriers of cations in Hquid membrane systems (404). This technology led to the development of ion-exchange resins (405), which are also suitable for extracting uranium from seawater (406). [Pg.13]

PhenoHc-based resins have almost disappeared. A few other resin types are available commercially but have not made a significant impact. Inorganic materials retain importance in a number of areas where synthetic organic ion-exchange resins are not normally used. Only the latter are discussed here. This article places emphasis on the styrenic and acryHc resins that are made as small beads. Other forms of synthetic ion-exchange materials such as membranes, papers, fibers (qv), foams (qv), and Hquid extractants are not included (see Extraction, liquid-liquid Membrane technology Paper.). [Pg.371]

A total of 15,000—17,000 t of resin is used aimuaHy. Polycarbonate also has many technical uses in instmment panels and devices, especiaHy for membrane switches and insulators. Optical quaHty polycarbonate is the only suitable material for the compact disk market. Since their introduction in 1983, compact disks have shown explosive growth in the consumption of polycarbonate, with utiHty for audio, video, and computer appHcations. Consumption of optical quaHty resin more than doubled between 1988 and 1992, and as of 1995 accounted for about 20,000 t of annual production. [Pg.285]

PVC. Poly(vinyl chloride) (PVC), a very versatile polymer, is manufactured by the polymerisation of vinyl chloride monomer, a gaseous substance obtained from the reaction of ethylene with oxygen and hydrochloric acid. In its most basic form, the resin is a relatively hard material that requites the addition of other compounds, commonly plasticisers and stabilisers as well as certain other ingredients, to produce the desired physical properties for roofing use. The membranes come in both reinforced and nonreinforced constmctions, but since the 1980s the direction has been toward offering only reinforced membranes. The membrane thickness typically mns from 0.8—1.5 mm and widths typically in the range of 1.5—4.6 m. [Pg.214]

The most common supported tubes are those with membranes cast in place (Fig. 17). These porous tubes are made of resin-impregnated fiber glass, sintered polyolefins, and similar materials. Typical inside diameters are ca 25 mm. The tubes are most often shrouded to aid in permeate collection and reduce airborne contamination. [Pg.302]

A large number of fibers ate cut to length, and potted in epoxy resin at each end (see Embedding). The fiber bundle is shrouded in a cylinder which aids in permeate collection, reduces airborne contarnination, and allows back pressing of the membrane. HoUow-fiber membranes (qv) have also found use in ultrafilttation. [Pg.303]

PVF resins have also been used in a variety of other appHcations, including conductive films (152), electrophotographic binders (153), as a component for inks (154), and in membranes (155,156), photoimaging (157), solder masks (158), and reprographic toners (159). [Pg.455]

Low viscosity cellulose propionate butyrate esters containing 3—5% butyryl, 40—50% propionyl, and 2—3% hydroxyl groups have excellent compatibihty with oil-modified alkyd resins (qv) and are used in wood furniture coatings (155). Acetate butyrate esters have been used in such varied apphcations as hot-melt adhesive formulations (156), electrostatically spray-coated powders for fusible, non-cratering coatings on metal surfaces (157—159), contact lenses (qv) with improved oxygen permeabiUty and excellent wear characteristics (160—162), and as reverse-osmosis membranes for desalination of water (163). [Pg.260]


See other pages where Membranes Resins is mentioned: [Pg.99]    [Pg.327]    [Pg.66]    [Pg.99]    [Pg.140]    [Pg.120]    [Pg.228]    [Pg.99]    [Pg.327]    [Pg.66]    [Pg.99]    [Pg.140]    [Pg.120]    [Pg.228]    [Pg.220]    [Pg.1109]    [Pg.1284]    [Pg.197]    [Pg.502]    [Pg.316]    [Pg.533]    [Pg.150]    [Pg.154]    [Pg.155]    [Pg.387]    [Pg.216]    [Pg.228]    [Pg.83]    [Pg.291]    [Pg.454]    [Pg.494]    [Pg.8]    [Pg.136]    [Pg.317]   
See also in sourсe #XX -- [ Pg.861 ]




SEARCH



Furan Resin Membranes

Hollow fiber membrane epoxy resin

Membrane ion-exchange resin

Membranes Polystyrene resins

Resin particle membrane

© 2024 chempedia.info