Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porous membranes structure

Modelling Cas Separation in Porous Membranes 91 Silica Zeolite [Pg.91]

X the probability that the molecule will pass through the transition (pe) X the velocity of the molecule through the transition (m) [Pg.92]

X the jump length from the reactant cavity to the product cavity (A). [Pg.92]


For those cases where the catalyst is not attached to the membrane, catalyst pellets are typically used. The preparation of catalyst pellets has been extensively documented and will not be reviewed here. Only the preparation of the catalyst inside the membrane porous structure is discussed in this chapter. [Pg.401]

FIGURE 6.7 Scanning electronic microscopy images of inorganic membrane porous structures (a) asymmetric alumina (b) asymmetric carbon structure (c) homogeneous alumina structure and (d) homogeneous glass structure. [Pg.144]

The modelling of enzymatic membrane reactors follows, in general, the same approach as described previously. In enzymatic membrane reactors the catalyst is a macromolecule (enzyme). It can be found either in a free form in the reactor or supported on the membrane surface, or inside the membrane porous structure by grafting it or in the form of a gel obtained by ultrafiltration. As in the case of the whole-cell membrane bioreactors discussed above, the proper calculation of the mass transfer characteristics is of great importance for the modelling of this type of reactor. One of the earliest models of enzymatic membrane bioreactors is by Salmon and Robertson [5.108]. These authors modelled an enzymatic membrane bioreactor, which was made of four coaxial compartments the enzyme is confined within one of the compartments, and one of the substrates is fed in a gaseous form. [Pg.216]

The water flux of the blend membrane was kept almost unchanged, while rejection of PVP K-90 was highly improved from 76% to 99% upon addition of 1 % PSR into the PVC membrane. The mechanical strength of the membranes was randomly improved with the PSR content due to the difference in membrane porous structure. [Pg.12]

However, direct interpretation of experimental flow or diffusion data from real micro and mesoporous materials often proves to be very complicated. Modeling of membrane porous structures can provide the basis for a reliable determination of macroscopic transport properties. Up to now, two categories of methods, statistical and process-based, have emerged that represent the structure of nanoporous (meso and micro) materials (Kikkinides, 2003). The former methods use statistical information obtained from the... [Pg.1343]

In catalytic membrane reactors (CMRs), the reactions take place directly on the membrane and the membrane functions as both a catalyst and a separator/distributor.This requires that the membrane material has intrinsic catalytic activity or that it is modified by the addition of active components. Some of the commonly utilized inorganic (such as metal oxide and zeolite) and metal membranes are intrinsically catalytically active. In other cases, the catalysts can be integrated with the membrane into a single body by being coated on the membrane surface or deposited inside the membrane porous structure. In case the membrane does not participate in the reaction directly, but is used to add or remove certain species from the reactor, this is called an inert membrane reactor (IMR). [Pg.24]

Direct information on membrane porous structure and sublayer structure is obtained with microscopical methods. The most commonly applied methods are SEM and AFM because the resolution of the microscopes is good enough for characterization of ultra- and nano-hltration membranes and even RO membranes. In rough surface characterization conventional optical microscopy can also be used. The resolution of CSLM is sufficient only for characterization of microhltration membranes. However, the advantage of CSLM is that information on the membrane bulk structure can be obtained without physical sample cross sectioning. [Pg.868]

Membrane Porosity Separation membranes run a gamut of porosity (see Fig. 22-48). Polymeric and metallic gas separation membranes, electrodialysis membranes, pervaporation membranes, and reverse osmosis membranes are nonporous, although there is hnger-ing controversy over the nonporosity of the latter. Porous membranes are used for microfiltration and ultrafiltratiou. Nanofiltration membranes are probably charged porous structures. [Pg.2025]

Catalytic A catalytic-membrane reactor is a combination heterogeneous catalyst and permselective membrane that promotes a reaction, allowing one component to permeate. Many of the reactions studied involve H9. Membranes are metal (Pd, Ag), nonporous metal oxides, and porous structures of ceran iic and glass. Falconer, Noble, and Speriy [in Noble and Stern (eds.), op. cit., pp. 669-709] review status and potential developments. [Pg.2050]

In supported liquid membranes, a chiral liquid is immobilized in the pores of a membrane by capillary and interfacial tension forces. The immobilized film can keep apart two miscible liquids that do not wet the porous membrane. Vaidya et al. [10] reported the effects of membrane type (structure and wettability) on the stability of solvents in the pores of the membrane. Examples of chiral separation by a supported liquid membrane are extraction of chiral ammonium cations by a supported (micro-porous polypropylene film) membrane [11] and the enantiomeric separation of propranolol (2) and bupranolol (3) by a nitrate membrane with a A/ -hexadecyl-L-hydroxy proline carrier [12]. [Pg.130]

The values of the Michaelis-Menten kinetic parameters, Vj3 and C,PP characterise the kinetic expression for the micro-environment within the porous structure. Kinetic analyses of the immobilised lipase in the membrane reactor were performed because the kinetic parameters cannot be assumed to be the same values as for die native enzymes. [Pg.130]

The vast increase in the application of membranes has expanded our knowledge of fabrication of various types of membrane, such as organic and inorganic membranes. The inorganic membrane is frequently called a ceramic membrane. To fulfil the need of the market, ceramic membranes represent a distinct class of inorganic membrane. There are a few important parameters involved in ceramic membrane materials, in terms of porous structure, chemical composition and shape of the filter in use. In this research, zirconia-coated y-alumina membranes have been developed using the sol-gel technique. [Pg.387]

A question of practical interest is the amount of electrolyte adsorbed into nanostructures and how this depends on various surface and solution parameters. The equilibrium concentration of ions inside porous structures will affect the applications, such as ion exchange resins and membranes, containment of nuclear wastes [67], and battery materials [68]. Experimental studies of electrosorption studies on a single planar electrode were reported [69]. Studies on porous structures are difficult, since most structures are ill defined with a wide distribution of pore sizes and surface charges. Only rough estimates of the average number of fixed charges and pore sizes were reported [70-73]. Molecular simulations of nonelectrolyte adsorption into nanopores were widely reported [58]. The confinement effect can lead to abnormalities of lowered critical points and compressed two-phase envelope [74]. [Pg.632]

TFF module types include plate-and-frame (or cassettes), hollow fibers, tubes, monoliths, spirals, and vortex flow. Figures 20-52 and 20-53 show several common module types and the flow paths within each. Hollow fiber or tubular modules are made by potting the cast membrane fibers or tubes into end caps and enclosing the assembly in a shell. Similar to fibers or tubes, monoliths have their retentive layer coated on the inside of tubular flow channels or lumens with a high-permeability porous structure on the shell side. [Pg.40]

Tennikov, M. B., Gazdina, N., Tennikova, T. B., and Svec, F., Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins, J. Chromatogr. A, 798, 55, 1998. [Pg.309]

Most slabstock foams are open-celled, that is, the walls around each cell are incomplete. Towards the end of the foaming process, the polymer migrates from the membranes between cells to the cell struts, which results in a porous structure. In some cases, cells near the surface of the foam collapse to form a continuous skin, which may be trimmed off later. [Pg.389]

Quantitative analytical treatments of the effects of mass transfer and reaction within a porous structure were apparently first carried out by Thiele (20) in the United States, Dam-kohler (21) in Germany, and Zeldovitch (22) in Russia, all working independently and reporting their results between 1937 and 1939. Since these early publications, a number of different research groups have extended and further developed the analysis. Of particular note are the efforts of Wheeler (23-24), Weisz (25-28), Wicke (29-32), and Aris (33-36). In recent years, several individuals have also extended the treatment to include enzymes immobilized in porous media or within permselective membranes. The important consequence of these analyses is the development of a technique that can be used to analyze quantitatively the factors that determine the effectiveness with which the surface area of a porous catalyst is used. For this purpose we define an effectiveness factor rj for a catalyst particle as... [Pg.438]

An active, catalytic layer, comprising a three-dimensional porous structure composed of a mixture of hydrophilic carbon particles (Vulcan XC-72) supporting a finely dispersed catalyst, and a hydrophobic binder (PTFE). This layer faces the liquid side and can be visualised as being formed from many hydro-phobic channels (the route of the oxygen supply) and hydrophilic channels, required for the rapid removal of caustic released into the gap between the membrane and GDE. [Pg.134]

Ultrafiltration (UF) is an important component in wastewater treatment and in food industry [109,110]. With increasing concerns and regulations in environment as well as in food safety, the process of ultrafiltration has become more critical, whereby new technology development to provide faster and more efficient water treatment is not only necessary but also urgent. Currently, conventional polymeric UF membranes are prepared mainly by the phase immersion process, typically generating an asymmetric porous structure with two major limitations (1) relatively low porosity and (2) fairly broad pore-size distribution [111,112],... [Pg.147]

Some bead materials possess porous structure and, therefore, have very high surface to volume ratio. The examples include silica-gel, controlled pore glass, and zeolite beads. These inorganic materials are made use of to design gas sensors. Indicators are usually adsorbed on the surface and the beads are then dispersed in a permeation-selective membrane (usually silicone rubbers). Such sensors possess high sensitivity to oxygen and a fast response in the gas phase but can be rather slow in the aqueous phase since the gas contained in the pores needs to be exchanged. Porous polymeric materials are rarer and have not been used so far in optical nanosensors. [Pg.203]

Antoine et al. [28] inveshgated the gradient across the CL and found that the Pt utilization was dependent on the CL porosity. In a nonporous CL, catalyst utilization was increased through the preferential locahon of Pt close to the gas diffusion layer in a porous CL, catalyst utilization efficiency was increased through the preferential location of Pt close to the polymer electrolyte membrane. In PEM fuel cells, fhe CL has a porous structure, and better performance is expected if higher Pf loading is used af preferential locahons close to the membrane/catalyst layer interface. [Pg.71]

Pore size plays a key role in determining permeability and permselectivity (or retention property) of a membrane. The structural stability of porous inorganic membranes under high pressures makes them amenable to conventional pore size analysis such as mercury porosimetry and nitrogen adsor-ption/desorption. In contrast, organic polymeric membranes often suffer from high-pressure pore compaction or collapse of the porous support structure which is typically spongy . [Pg.74]

From the mercury porosimetry data, porosity can be calculated. A higher porosity means a more open pore structure, thus generally providing a higher permeability of the membrane. Porous inorganic membranes typically show a porosity of 20 to 60% in the separative layer. The porous support layers may have higher porosities. [Pg.82]

The porous membrane templates described above do exhibit three-dimensionality, but with limited interconnectedness between the discrete tubelike structures. Porous structures with more integrated pore—solid architectures can be designed using templates assembled from discrete solid objects or su-pramolecular structures. One class of such structures are three-dimensionally ordered macroporous (or 3-DOM) solids, which are a class of inverse opal structures. The design of 3-DOM structures is based on the initial formation of a colloidal crystal composed of monodisperse polymer or silica spheres assembled in a close-packed arrangement. The interconnected void spaces of the template, 26 vol % for a face-centered-cubic array, are subsequently infiltrated with the desired material. [Pg.237]


See other pages where Porous membranes structure is mentioned: [Pg.250]    [Pg.90]    [Pg.19]    [Pg.250]    [Pg.90]    [Pg.19]    [Pg.353]    [Pg.118]    [Pg.632]    [Pg.61]    [Pg.302]    [Pg.435]    [Pg.153]    [Pg.174]    [Pg.176]    [Pg.177]    [Pg.189]    [Pg.400]    [Pg.363]    [Pg.417]    [Pg.45]    [Pg.83]    [Pg.17]    [Pg.224]    [Pg.236]    [Pg.518]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Asymmetric membranes with porous separation layer, structure

Ceramic membranes porous structure

Membrane porous

Membranes structure

Membranes structured

Polymer membranes porous structures

Polymeric tubular structures porous membranes

Porous Structure of Membrane Surface, AFM

Porous structure

Porous symmetric membranes structure

© 2024 chempedia.info