Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes Mercurial

Mercury has a great affinity for sulfydryl moieties and, hence, binds and inactivates a variety of enzymes. Methylmercury also initiates lipid peroxidation, which can produce alterations in cell membranes. Mercury damages the microtubules in the brain by reacting with the protein tubilin. [Pg.1622]

To determine the density of liquid freon, the method of a nonballast constant-volume piezometer with membrane-mercury separator was used. The mass of the substance in the piezometer was determined by weighing after freezing out Freon-23 in the separating container. The temperature and pressure were measured using the same instruments as in Ref. [4.3]. Experiments were conducted along the isochores. The maximum error of measuring specific volume fell within the range 0.1-0.2%. [Pg.140]

Faraday s law (p. 496) galvanostat (p. 464) glass electrode (p. 477) hanging mercury drop electrode (p. 509) hydrodynamic voltammetry (p. 513) indicator electrode (p. 462) ionophore (p. 482) ion-selective electrode (p. 475) liquid-based ion-selective electrode (p. 482) liquid junction potential (p. 470) mass transport (p. 511) mediator (p. 500) membrane potential (p. 475) migration (p. 512) nonfaradaic current (p. 512)... [Pg.532]

In 1988 diaphragm cells accounted for 76% of all U.S. chlorine production, mercury cells for 17%, membrane cells for 5%, and all other production methods for 2%. Corresponding statistics for Canadian production are diaphragm cells, 81% mercury cells, 15% and membrane cells, 4% (5). for a number of reasons, including concerns over mercury pollution, recent trends are away from mercury cell production toward the more environmentally acceptable membrane cells, which also produce higher quality product and have favorable economics. [Pg.478]

Conversion of aqueous NaCl to Cl and NaOH is achieved in three types of electrolytic cells the diaphragm cell, the membrane cell, and the mercury cell. The distinguishing feature of these cells is the manner by which the electrolysis products are prevented from mixing with each other, thus ensuring generation of products having proper purity. [Pg.482]

Chloiine is pioduced at the anode in each of the three types of electrolytic cells. The cathodic reaction in diaphragm and membrane cells is the electrolysis of water to generate as indicated, whereas the cathodic reaction in mercury cells is the discharge of sodium ion, Na, to form dilute sodium amalgam. [Pg.482]

Separation of the anode and cathode products in diaphragm cells is achieved by using asbestos [1332-21 -4] or polymer-modified asbestos composite, or Polyramix deposited on a foraminous cathode. In membrane cells, on the other hand, an ion-exchange membrane is used as a separator. Anolyte—catholyte separation is realized in the diaphragm and membrane cells using separators and ion-exchange membranes, respectively. The mercury cells contain no diaphragm the mercury [7439-97-6] itself acts as a separator. [Pg.482]

The catholyte from diaphragm cells typically analyzes as 9—12% NaOH and 14—16% NaCl. This ceUHquor is concentrated to 50% NaOH in a series of steps primarily involving three or four evaporators. Membrane cells, on the other hand, produce 30—35% NaOH which is evaporated in a single stage to produce 50% NaOH. Seventy percent caustic containing very Httie salt is made directiy in mercury cell production by reaction of the sodium amalgam from the electrolytic cells with water in denuders. [Pg.482]

Table 6. Components of Diaphragm, Membrane, and Mercury Cells... Table 6. Components of Diaphragm, Membrane, and Mercury Cells...
Component Mercury cell Diaphragm cell Membrane cell... [Pg.482]

The components of the diaphragm, membrane, and mercury cell voltages presented ia Table 8 show that, although the major component of the cell voltage is the term, ohmic drops also contribute to the irreversible energy losses duting the operation of the cells. [Pg.485]

Early demand for chlorine centered on textile bleaching, and chlorine generated through the electrolytic decomposition of salt (NaCl) sufficed. Sodium hydroxide was produced by the lime—soda reaction, using sodium carbonate readily available from the Solvay process. Increased demand for chlorine for PVC manufacture led to the production of chlorine and sodium hydroxide as coproducts. Solution mining of salt and the avadabiHty of asbestos resulted in the dominance of the diaphragm process in North America, whereas soHd salt and mercury avadabiHty led to the dominance of the mercury process in Europe. Japan imported its salt in soHd form and, until the development of the membrane process, also favored the mercury ceU for production. [Pg.486]

Electrolytic Cell Operating Characteristics. Currently the greatest volume of chlorine production is by the diaphragm ceU process, foUowed by that of the mercury ceU and then the membrane ceU. However, because of the ecological and economic advantages of the membrane process over the other systems, membrane ceUs are currently favored for new production facHities. The basic characteristics of the three ceU processes are shown in Eigure 5. [Pg.486]

Removal of brine contaminants accounts for a significant portion of overall chlor—alkali production cost, especially for the membrane process. Moreover, part or all of the depleted brine from mercury and membrane cells must first be dechlorinated to recover the dissolved chlorine and to prevent corrosion during further processing. In a typical membrane plant, HCl is added to Hberate chlorine, then a vacuum is appHed to recover it. A reducing agent such as sodium sulfite is added to remove the final traces because chlorine would adversely react with the ion-exchange resins used later in the process. Dechlorinated brine is then resaturated with soHd salt for further use. [Pg.502]

Chlorine from Potassium Hydroxide Manufacture. One of the coproducts during the electrolytic production of potassium hydroxide employing mercury and membrane ceHs is chlorine. The combined name plate capacity for caustic potash during 1988 totaled 325,000 t/yr and growth of U.S. demand was expected to be steady at 2% through 1990 (68). [Pg.503]

Three forms of caustic soda are produced to meet customer needs purified diaphragm caustic (50% Rayon grade), 73% caustic, and anhydrous caustic. Regular 50% caustic from the diaphragm cell process is suitable for most appHcations and accounts for about 85% of the NaOH consumed in the United States. However, it caimot be used in operations such as the manufacture of rayon, the synthesis of alkyl aryl sulfonates, or the production of anhydrous caustic because of the presence of salt, sodium chlorate, and heavy metals. Membrane and mercury cell caustic, on the other hand, is of superior quaUty and... [Pg.514]

The choice of technology, the associated capital, and operating costs for a chlor—alkaU plant are strongly dependent on local factors. Especially important are local energy and transportation costs, as are environmental constraints. The primary difference ia operating costs between diaphragm, mercury, and membrane cell plants results from variations ia electricity requirements for the three processes (Table 25) so that local energy and steam costs are most important. [Pg.519]

There are three main technologies available for carrying out this process diaphragm cells, mercury cells, and membrane cells. Membrane cells are the most recent development, and are generally chosen for new production capacity. [Pg.75]


See other pages where Membranes Mercurial is mentioned: [Pg.237]    [Pg.156]    [Pg.462]    [Pg.48]    [Pg.387]    [Pg.1341]    [Pg.327]    [Pg.237]    [Pg.156]    [Pg.462]    [Pg.48]    [Pg.387]    [Pg.1341]    [Pg.327]    [Pg.253]    [Pg.364]    [Pg.480]    [Pg.483]    [Pg.484]    [Pg.486]    [Pg.488]    [Pg.502]    [Pg.502]    [Pg.502]    [Pg.503]    [Pg.519]    [Pg.519]    [Pg.108]    [Pg.124]    [Pg.125]    [Pg.270]    [Pg.76]    [Pg.1600]    [Pg.60]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Membranes Mercury

© 2024 chempedia.info