Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes description

In a recent review numerous examples were given of membrane ultrastructural textures consistent with the conformation discussed here [64]. Another obvious case of a conformation will be mentioned. The brain astrocytes are rich in potassium channels, which appear to play an important role in the regulation of the ion concentrations in the brain. Freeze-fracture electron micrographs of the outer astrocyte membrane contain patches of a periodic structure [65]. These ordered assemblies are thought to be potassium channels. In our membrane description these channels serve to plug the "holes" of a C D bilayer, whereas the rest of the membrane is in the conformation. [Pg.227]

Binding to a membrane. What is the electrostatic free energy of binding to the membrane description in problem () of a trhalent positive ion such as spermidine (a biologically actix e poly amine) assuming that... [Pg.446]

Figure 10.5 Visualization of a plane parallel at the surface of the membrane Description of the structure in honeycomb and the coalescence of the pores. Dimension 320 x 190 pm. Figure 10.5 Visualization of a plane parallel at the surface of the membrane Description of the structure in honeycomb and the coalescence of the pores. Dimension 320 x 190 pm.
The stiffening due to the assumption of a cross-section without strains, respectively curvatures, in its plane visible in the right-hand columns of Tables 10.5 and 10.6, has been found to be not very realistic. Hence, the subsequent calculations will be conducted by means of the assumption of a cross-section without loads in its plane. The results obtained for such a shell description of the beam walls are, furthermore, to be compared to the outcome of the significantly simpler membrane description. As briefly mentioned in the introduction to this section, three different solution approaches will be examined. The associated individual restrictions are discussed in the following. [Pg.189]

This summary describes the history of cellulose triacetate RO membrane, description of cellulose triacetate hollow-fiber RO modules of Toyobo for seawater desalination, actual operation results, and recent RO modules of cellulose triacetate including most recently developed advanced modules. [Pg.21]

The development of efficient algorithms and the sophisticated description of long-range electrostatic effects allow calculations on systems with 100 000 atoms and more, which address biochemical problems like membrane-bound protein complexes or the action of molecular machines . [Pg.398]

No toxicological studies have been reported on the triple salt. However, because of the common confusion of this compound with potassium hydrogen monoperoxosulfate monohydrate, it is possible that the pubHshed descriptions of the toxic properties of this latter compound actually refer to the triple salt. If this is so, then the triple salt must be regarded as toxic and irritating to skin, eyes, and mucous membranes (2). [Pg.95]

Potassium hydrogen monoperoxosulfate monohydrate [14696-73-2] KHSO 20, related to the triple salt, is not made commercially. The crystal stmcture has been determined and some features of its Raman and ir spectra recorded (69). This compound is more stable under x-rays than the triple salt. The 0—0 distance is 0.1460 nm. The dihedral angle of the 0—0 moiety is about 90°, similar to that ia soHd hydrogea peroxide. This compouad is reported as toxic and irritating to eyes, skin, and mucous membranes (2). Although undoubtedly correct, this description probably better relates to the triple salt. [Pg.95]

Transport Models. Many mechanistic and mathematical models have been proposed to describe reverse osmosis membranes. Some of these descriptions rely on relatively simple concepts others are far more complex and require sophisticated solution techniques. Models that adequately describe the performance of RO membranes are important to the design of RO processes. Models that predict separation characteristics also minimize the number of experiments that must be performed to describe a particular system. Excellent reviews of membrane transport models and mechanisms are available (9,14,25-29). [Pg.146]

M. Williams, "Measurement and Mathematical Description of Separation Characteristics of Ha2ardous Organic Compounds with Reverse Osmosis Membranes," dissertation. University of Kentucky, Lexiagton, Ky., 1993. [Pg.158]

Single-ply membranes offer the widest range of systems in the roofing industry. The three basic systems are ballasted, fuUy adhered, and mechanically fastened. From a cost standpoint, the fuUy adhered system is the most expensive to install, the ballasted system the least. The protected-membrane roofing system can be used with any of the basic systems. The specifications for these systems are pubHshed by the various manufacturers. The following gives a brief description of the roof assembhes. [Pg.212]

Polymeric Ma.teria.Is, The single-ply membranes are made from a wide variety of polymers. The following is a brief description of those polymers and their characteristics. There are three thermosetting-type elastomeric membranes as of this writing (1996) neoprene, CSPE, and EPDM. Neoprene is stiU used where oil resistance is needed. Eor instance. Hydrotech uses neoprene flashings, the base of which is hot-set in mbberized asphalt (see ElASTOL RS, SYNTHETIC-POLYCm.OROPRENE). [Pg.213]

The voltage used for electro dialysis is about 1 V per membrane pair, and the current flux is of the order of 100 A/m of membrane surface. The total power requirement increases with the feedwater salt concentration, amounting to about 10 MW per m product water per 1000 ppm reduction in salinity. About half this power is required for separation and half for pumping. Many plant flow arrangements exist, and their description can be found, along with other details about the process, in References 68 and 69. Many ED plants, as large as 15,000 vsf jd, are in operation, reducing brackish water concentration typically by a factor of 3—4. [Pg.253]

Facilitated Transport Transport by a reacti -e phase through a membrane is promising but problematic. Way and Noble [in Ho and Sirkar (eds,), op, cit, pp, 833-866] haye a description and a complete bibliography. [Pg.2023]

Retention Rejection and Reflection Retention and rejection are used almost interchangeably. A third term, reflection, includes a measure of solute-solvent coupling, and is the term used in irreversible thermodynamic descriptions of membrane separations. It is important in only a few practical cases. Rejection is the term of trade in reverse osmosis (RO) and NF, and retention is usually used in UF and MF. [Pg.2025]

Plate-and-Frame (Conceptually the simplest, it is veiv much like a filter press. Once found in RO, UF, and IVIF, it is still the only module commonly used in electrodialysis (ED). A fevy applications in pressure-driven membrane separation remain (see Sec. 18 for a description of a plate-and-frarne filter press). [Pg.2027]

Process Description lectrodialysls (ED) is a membrane separation process in which ionic species are separated from water, macrosolutes, and all uncharged solutes. Ions are induced to move by an electrical potential, and separation is facilitated by ion-exchange membranes. Membranes are highly selective, passing either anions or cations andveiy little else. The principle of ED is shown in Fig. 22-56. [Pg.2028]

Process Description Reverse osmosis (RO) and nanofiltration (NF) processes utilize a membrane that selectively restricts flow of solutes while permitting flow of the solvent. The processes are closely related, and NF is sometimes called loose RO. They are kinetic processes, not equilibrium processes. The solvent is almost always water. [Pg.2034]

Process Description Microfiltration (MF) separates particles from true solutions, be they liquid or gas phase. Alone among the membrane processes, microfiltration may be accomplished without the use of a membrane. The usual materi s retained by a microfiltra-tion membrane range in size from several [Lm down to 0.2 [Lm. At the low end of this spectrum, very large soluble macromolecules are retained by a microfilter. Bacteria and other microorganisms are a particularly important class of particles retained by MF membranes. Among membrane processes, dead-end filtration is uniquely common to MF, but cross-flow configurations are often used. [Pg.2043]

Process Description Gas-separation membranes separate gases from other gases. Some gas filters, which remove hquids or sohds from gases, are microfiltration membranes. Gas membranes generally work because individual gases differ in their solubility and diffusivity through nonporous polymers. A few membranes operate by sieving, Knudsen flow, or chemical complexation. [Pg.2047]

Process Descriptions Selectively permeable membranes have an increasingly wide range of uses and configurations as the need for... [Pg.2193]

Ion-selective electrodes (ISEs) with ionophore-based membranes allow for quantification of a large number of analytes in various matrixes. Tailoring of the composition of the membranes to comply with the analytical task, requires advanced theory of membrane response. Most of theoretical descriptions include nonrealistic extra-thermodynamic assumptions, in the first place it is assumed that some kind of species strongly predominate in membranes. Ideally, a rigorous theory of ISE response should be based on strict thermodynamics. However, real ISE membranes are too complex. Therefore, known attempts aimed at rigorous thermodynamic description of ISEs proved to be fraritless. [Pg.305]

ZENONEnvironmental Inc. Contains information on membrane technology and equipment descriptions and support services for drinking water treatment applications, http //www.zenonenv.com/zenon drinking water.html... [Pg.333]

In Sec. 3 our presentation is focused on the most important results obtained by different authors in the framework of the rephca Ornstein-Zernike (ROZ) integral equations and by simulations of simple fluids in microporous matrices. For illustrative purposes, we discuss some original results obtained recently in our laboratory. Those allow us to show the application of the ROZ equations to the structure and thermodynamics of fluids adsorbed in disordered porous media. In particular, we present a solution of the ROZ equations for a hard sphere mixture that is highly asymmetric by size, adsorbed in a matrix of hard spheres. This example is relevant in describing the structure of colloidal dispersions in a disordered microporous medium. On the other hand, we present some of the results for the adsorption of a hard sphere fluid in a disordered medium of spherical permeable membranes. The theory developed for the description of this model agrees well with computer simulation data. Finally, in this section we demonstrate the applications of the ROZ theory and present simulation data for adsorption of a hard sphere fluid in a matrix of short chain molecules. This example serves to show the relevance of the theory of Wertheim to chemical association for a set of problems focused on adsorption of fluids and mixtures in disordered microporous matrices prepared by polymerization of species. [Pg.294]


See other pages where Membranes description is mentioned: [Pg.407]    [Pg.515]    [Pg.407]    [Pg.515]    [Pg.1299]    [Pg.2363]    [Pg.489]    [Pg.153]    [Pg.65]    [Pg.196]    [Pg.31]    [Pg.2030]    [Pg.2038]    [Pg.2045]    [Pg.2053]    [Pg.305]    [Pg.136]    [Pg.176]   
See also in sourсe #XX -- [ Pg.474 ]

See also in sourсe #XX -- [ Pg.388 , Pg.389 , Pg.392 , Pg.393 , Pg.394 , Pg.395 , Pg.396 ]

See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Commercially-available membranes description

Emulsion liquid membranes description

General Description of Liquid Membranes

Liquid membrane system description

Liquid membranes general description

Liquid surfactant membrane description

Membrane concentration test, description

Membrane proteins description

Membrane sampling technique, description

Membrane separation, general description

Membrane systems design description

Membrane, general description

Plasma membrane description

Porous membranes permeation description

RO membrane plant description

Separation membranes, description

Supported liquid membrane description

© 2024 chempedia.info