Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane-separation characteristics

Process Pore size Driving force mechanism [Pg.10]

Nanofiltration 2.0 nm Pressure, 5—15 bar Donnan exclusion/ sorption-capillary flow [Pg.10]

Reverse osmosis 0.6 nm Pressure, 15—100 bar Preferential sorption-capfllary flow [Pg.10]

Pervaporation Non-porous Partial pressure difference Solution-diflusion [Pg.10]

Dialysis 10-30 A Concentration difference Sieving-diflusivity difference [Pg.10]


Polymer features that lead to miscibility with polysulfone should be further quantihed to be able to optimize the membrane separation characteristics of polymer mixtures. On the other hand, in the case of immiscible polysulfone blends, it is desirable to better define the features of the blend components that lead to a particular morphology. Some of those features are perhaps going to be different in the case of thermoplastic and thermoset matrix materials, but viscosity is certainly going to be relevant in both cases. However, in order to best utilize the polysulfone blends that have been discussed in this chapter, more work is required to better comprehend their structure-property-processing relationships. [Pg.172]

Reverse osmosis membrane separations are governed by the properties of the membrane used in the process. These properties depend on the chemical nature of the membrane material, which is almost always a polymer, as well as its physical stmcture. Properties for the ideal RO membrane include low cost, resistance to chemical and microbial attack, mechanical and stmctural stabiHty over long operating periods and wide temperature ranges, and the desired separation characteristics for each particular system. However, few membranes satisfy all these criteria and so compromises must be made to select the best RO membrane available for each appHcation. Excellent discussions of RO membrane materials, preparation methods, and stmctures are available (8,13,16-21). [Pg.144]

An excellent review of composite RO and nanofiltration (NE) membranes is available (8). These thin-fHm, composite membranes consist of a thin polymer barrier layer formed on one or more porous support layers, which is almost always a different polymer from the surface layer. The surface layer determines the flux and separation characteristics of the membrane. The porous backing serves only as a support for the barrier layer and so has almost no effect on membrane transport properties. The barrier layer is extremely thin, thus allowing high water fluxes. The most important thin-fHm composite membranes are made by interfacial polymerization, a process in which a highly porous membrane, usually polysulfone, is coated with an aqueous solution of a polymer or monomer and then reacts with a cross-linking agent in a water-kniniscible solvent. [Pg.144]

Transport Models. Many mechanistic and mathematical models have been proposed to describe reverse osmosis membranes. Some of these descriptions rely on relatively simple concepts others are far more complex and require sophisticated solution techniques. Models that adequately describe the performance of RO membranes are important to the design of RO processes. Models that predict separation characteristics also minimize the number of experiments that must be performed to describe a particular system. Excellent reviews of membrane transport models and mechanisms are available (9,14,25-29). [Pg.146]

M. Williams, "Measurement and Mathematical Description of Separation Characteristics of Ha2ardous Organic Compounds with Reverse Osmosis Membranes," dissertation. University of Kentucky, Lexiagton, Ky., 1993. [Pg.158]

The factors to consider in the selection of cross-flow filtration include the cross-flow velocity, the driving pressure, the separation characteristics of the membrane (permeability and pore size), size of particulates relative to the membrane pore dimensions, and the hydrodynamic conditions within the flow module. Again, since particle-particle and particle-membrane interactions are key, broth conditioning (ionic strength, pH, etc.) may be necessary to optimize performance. [Pg.2058]

Although ED is more complex than other membrane separation processes, the characteristic performance of a cell is, in principle, possible to calculate from a knowledge of ED cell geometry and the electrochemical properties of the membranes and the electrolyte solution. [Pg.342]

Armstrong and Jin [15] reported the separation of several hydrophobic isomers (including (l-ferrocenylethyl)thiophenol, 1 -benzylnornicotine, mephenytoin and disopyramide) by cyclodextrins as chiral selectors. A wide variety of crown ethers have been synthesized for application in enantioselective liquid membrane separation, such as binaphthyl-, biphenanthryl-, helicene-, tetrahydrofuran and cyclohex-anediol-based crown ethers [16-20]. Brice and Pirkle [7] give a comprehensive overview of the characteristics and performance of the various crown ethers used as chiral selectors in liquid membrane separation. [Pg.131]

Nonselective membranes can assist enantioselective processes, providing essential nonchiral separation characteristics and thus making a chiral separation based on enantioselectivity outside the membrane technically and economically feasible. For this purpose several configurations can be applied (i) liquid-liquid extraction based on hollow-fiber membrane fractionation (ii) liquid- membrane fractionation and (iii) micellar-enhanced ultrafiltration (MEUF). [Pg.138]

The thud step gives a polymer-rich phase forming the membrane, and a polymer-depleted phase forming the pores. The ultimate membrane structure results as a combination of phase separation and mass transfer, variation of the production conditions giving membranes with different separation characteristics. Most MF membranes have a systematic pore structure, and they can have porosity as high as 80%.11,12Figure 16.6 shows an atomic force microscope... [Pg.357]

Water Permeation and Solute Separation through the Membrane. The measurements of water permeability of the 67 membranes prepared under different conditions were carried out by using an Amicon Diaflo Cell (effective membrane area, 13.9 cm2) under a pressure of 3 kg/cm2 at 25 °C. Some results are listed in Table 1067. It is apparent that much higher water absorption and permeability than the cellulosic membrane are characteristic of the 67 membranes prepared by both the casting polymerization and conventional casting. [Pg.79]

Generally, the effectiveness of the separation is determined not by the membrane itself, but rather by the formation of a secondary or dynamic membrane caused by interactions of the solutes and particles with the membrane. The buildup of a gel layer on the surface of an ultrafiltration membrane owing to rejection of macromolecules can provide the primary separation characteristics of the membrane. Similarly, with colloidal suspensions, pore blocking and bridging of... [Pg.75]

Figure 3 shows a steady diffusion across a membrane. As in the previous case, the membrane separates two well-mixed dilute solutions, and the diffusion coefficient Dm is assumed constant. However, unlike the film, the membrane has different physicochemical characteristics than the solvent. As a result, the diffusing solute molecules may preferentially partition into the membrane or the solvent. As before, applying Fick s second law to diffusion across a membrane, we... [Pg.48]

Table 2.8. Permeability, Selectivity and Separation Characteristics of Various Polymeric and Molecular Sieve Carbon (MSC) Membranes (Koresh and Soffer 1983) ... Table 2.8. Permeability, Selectivity and Separation Characteristics of Various Polymeric and Molecular Sieve Carbon (MSC) Membranes (Koresh and Soffer 1983) ...
The interest in ceramic membranes grew, together with the interest in membrane separation processes, due to their specific properties. They are chemically stable, can withstand high temperatures and are noncompressible. These characteristics made them the only materials available, which could withstand the harsh environment in the isotope separation. On the other hand, the brittleness of most materials is a problem and so is the selectivity. [Pg.95]

For multi-component systems it seems intuitive that single-component diffusion and adsorption data would enable one to predict which component would be selectively passed through a membrane. This is only the case where molecular sieving is observed for all other separations where the molecules interact with one another and with the zeolite framework their behavior is determined by these interactions. Differences in membrane properties such as quahty, microstructure, composition and modification can also play a large role in the observed separation characteristics. In many cases, these properties can be manipulated in order to tailor a membrane for a specific apphcation or separation. [Pg.318]

Tomita, T., Nakayama, K., and Sakai, H. (2004) Gas separation characteristics of DDR type zeolite membrane. Micropor. Mesopor. Mater., 68, 71-75. [Pg.349]


See other pages where Membrane-separation characteristics is mentioned: [Pg.228]    [Pg.8]    [Pg.512]    [Pg.553]    [Pg.228]    [Pg.8]    [Pg.512]    [Pg.553]    [Pg.144]    [Pg.152]    [Pg.155]    [Pg.2028]    [Pg.2058]    [Pg.2228]    [Pg.35]    [Pg.128]    [Pg.140]    [Pg.575]    [Pg.574]    [Pg.66]    [Pg.125]    [Pg.167]    [Pg.439]    [Pg.470]    [Pg.326]    [Pg.216]    [Pg.3]    [Pg.236]    [Pg.134]    [Pg.144]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Hydrogen separation membranes characteristics

Membrane separation processes characteristics

Separation characteristics

Separators characteristics

© 2024 chempedia.info