Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane reactors polymeric membranes

In this case study, an enzymatic hydrolysis reaction, the racemic ibuprofen ester, i.e. (R)-and (S)-ibuprofen esters in equimolar mixture, undergoes a kinetic resolution in a biphasic enzymatic membrane reactor (EMR). In kinetic resolution, the two enantiomers react at different rates lipase originated from Candida rugosa shows a greater stereopreference towards the (S)-enantiomer. The membrane module consisted of multiple bundles of polymeric hydrophilic hollow fibre. The membrane separated the two immiscible phases, i.e. organic in the shell side and aqueous in the lumen. Racemic substrate in the organic phase reacted with immobilised enzyme on the membrane where the hydrolysis reaction took place, and the product (S)-ibuprofen acid was extracted into the aqueous phase. [Pg.130]

It turned out that for all the polymeric amphiphiles of the (EO) -(PO)m-(EO) type there was an increase in enantioselectivity compared with the reaction without amphiphile. Moreover, the ratio of the length of the (PO) block compared with the (EO) block seemed to determine enantioselectivity and activity and not the cmc (critical micelle concentration). A (PO) block length of 56 units works best with different length of the (EO)n block in this type of hydrogenation [30]. for the work-up of the experiments, G. Oehme et al. used the extraction method, but initial experiments failed and the catalyst could not be recycled that way. To solve this problem the authors applied a membrane reactor in combination with the amphiphile (EO)37-(PO)5g-(EO)37 (Tab. 6.1, entry 9) [31]. By doing so, the poly-mer/Rh-catalyst was retained and could be reused several times without loss of activity and enantioselectivity by more than 99%. [Pg.282]

Ultrafiltration has been used for the separation of dendritic polymeric supports in multi-step syntheses as well as for the separation of dendritic polymer-sup-ported reagents [4, 21]. However, this technique has most frequently been employed for the separation of polymer-supported catalysts (see Section 7.5) [18]. In the latter case, continuous flow UF-systems, so-called membrane reactors, were used for homogeneous catalysis, with catalysts complexed to dendritic ligands [23-27]. A critical issue for dendritic catalysts is the retention of the catalyst by the membrane (Fig. 7.2b, see also Section 7.5). [Pg.310]

Membrane reactors have been investigated since the 1970s 11). Although membranes can have several functions in a reactor, the most obvious is the separation of reaction components. Initially, the focus has been mainly on polymeric membranes applied in enzymatic reactions, and ultrafiltration of enzymes is commercially applied on a large scale for the synthesis of fine chemicals (e.g., L-methionine) 12). Membrane materials have been improved significantly over those applied initially, and nanofiltration membranes suitable to retain relatively small compounds are now available commercially (e.g., mass cut-off of 400—750 Da). [Pg.74]

Oxidation of HMF was also attempted in situ directly from fructose, using a membrane reactor or encapsulating PtBi/C into a polymeric silicone matrix, and again, with air as the oxidant. However, the yield was never more than 25%. A further attempt to obtain FDCA directly from fructose involved a one pot reaction in the presence of cobalt acetyl-acetonate encapsulated in sol-gel silica, at 155 °C and with 2 MPa of air pressure giving FDCA with 99% selectivity directly from fructose at a conversion of 72%. ... [Pg.37]

Membrane reactors can be considered passive or active according to whether the membrane plays the role of a simple physical barrier that retains the free enzyme molecules solubilized in the aqueous phase, or it acts as an immobilization matrix binding physically or chemically the enzyme molecules. Polymer- and ceramic-based micro- and ultrafiltration membranes are used, and particular attention has to be paid to the chemical compatibility between the solvent and the polymeric membranes. Careful, fine control of the transmembrane pressure during operation is also required in order to avoid phase breakthrough, a task that may sometimes prove difficult to perform, particularly when surface active materials are present or formed during biotransformahon. Sihcone-based dense-phase membranes have also been evaluated in whole-cell processes [55, 56], but... [Pg.205]

Membrane reactors - no mass transfer limitations - pyrogen-free products - scale-up simple - pre-filtration required - no polymeric products possible - no product precipitation possible... [Pg.107]

A membrane can be generated by polymerization around a few biocatalyst molecules which surround a space of a few hundred micrometers (microencapsulation Figure 5.6, option 5), or it can be of macroscopic dimensions (Figure 5.6, option 6). In the latter case, membrane reactors can be classified according to (i) driving force, (ii) pore structure and (iii) pore size. [Pg.111]

All peptide-catalyzed enone epoxidations described so far were performed using insoluble, statistically polymerized materials (neat or on solid supports). One can, on the other hand, envisage (i) generation of solubilized poly-amino acids by attachment to polyethylene glycols (PEG) and (ii) selective construction of amino acid oligomers by standard peptide synthesis-linked to a solid support, to a soluble PEG, or neat as a well-defined oligopeptide. Both approaches have been used. The former affords synthetically useful and soluble catalysts with the interesting feature that the materials can be kept in membrane reactors for continuously oper-... [Pg.296]

Y. Zhu, R.G. Minet and T.T. Tsotsis, A Continuous Pervaporation Membrane Reactor for the Study of Esterification Reactions Using a Composite Polymeric/Ceramic Membrane, Chem. Eng. Sci. 51, 4103 (1996). [Pg.391]

The coupling of photocatalysis and polymeric membranes has been carried out using Ti02 as photocatalyst compartmentalized in the reactor by a membrane [39]. Various types of commercial membranes (ranging from UF to NF) and reactor configurations have been investigated [39]. [Pg.279]

Another type of reactor that may have considerable future potential for use in homogeneous catalytic reactions is called the membrane reactor. These reactors have been successfully used for the commercialization of manufacturing processes based on enzyme catalysis. In fact, 75% of the global production of l-methionine is performed in an enzyme reactor. A membrane is basically an insoluble organic polymeric film that can have variable thickness. The catalyst... [Pg.42]

The polymeric oxazaborolidine prepared from the linear copolymer of 29 and styrene was used in membrane reactor and resulted in high total turnover number with high enantioselectivity [44]. Another polystyrene-based soluble polymeric oxazaborolidine 38 was used in the same system. Polysiloxanes are also useful polymeric supports of catalyst 39 for the same purpose [45]. [Pg.956]

The main advantages of reactors with composite membrane catalysts arc the higher hydrogen permeability and smaller amount of precious metals in comparison with those presented in Section II. All constructions of the reactors with plane membrane catalyst may be used for composites of thin palladium alloy film and porous metal sheet The design of reactors with composite membranes on polymeric support may be the same as for diffusion apparatus with polymeric membranes (see, for example. Ref. 138). A very promising support for the composite membrane catalysts is hollow carbon fiber [139], once properly thermostable adhesives are found. [Pg.452]

Despite the unique properties of inorganic membranes vs. the rather well-established polymeric ones (see Table 1 for a comparison), issues such as membrane instability, insufficient permeability or permselectivity, or simply the unbearable costs implied still hamper the application of inorganic-membrane reactors in the process industry. [Pg.464]


See other pages where Membrane reactors polymeric membranes is mentioned: [Pg.31]    [Pg.511]    [Pg.20]    [Pg.150]    [Pg.440]    [Pg.114]    [Pg.311]    [Pg.508]    [Pg.307]    [Pg.206]    [Pg.527]    [Pg.568]    [Pg.71]    [Pg.10]    [Pg.511]    [Pg.526]    [Pg.132]    [Pg.309]    [Pg.515]    [Pg.123]    [Pg.405]    [Pg.354]    [Pg.7]    [Pg.41]    [Pg.99]    [Pg.293]    [Pg.43]    [Pg.99]    [Pg.387]    [Pg.387]    [Pg.961]    [Pg.580]    [Pg.299]    [Pg.180]    [Pg.463]    [Pg.667]   
See also in sourсe #XX -- [ Pg.922 ]




SEARCH



Polymeric membranes

© 2024 chempedia.info