Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane on catalyst

Advanced hydrogen separation module with membrane on catalyst... [Pg.500]

Nishu T (2009), Reforming performance of hydrogen production module based on membrane on catalyst . Proceedings of 9th International Conference on Catalysis in Membrane Reactors, Lyon, France. [Pg.506]

Nishiyama, N., Miyamoto, M., Egashira, Y. and Ueyama, K. (2001) Zeolite membrane on catalyst particle for selective formation of p-xylene in disproportionation of toluene. Chemical Communications, 18, 1746-1747. [Pg.98]

A second option is to apply the membrane on the particle level (millimeter scale) by coating catalyst particles with a selective layer. As a third option, application at the microlevel (submicrometer scale) is distinguished. This option encompasses, for example, zeolite-coated crystals or active clusters (e.g., metal nanoparticles). Advantages of the latter two ways of application are that there are no sealing issues, it is easy to scale-up, the membrane area is large per unit volume, and, if there is a defect in the membrane, this will have a very limited effect on the overall reactor performance. Because of these advantages, it is believed that using a zeolite... [Pg.214]

In the case of a catalytic membrane reactor (CMR), the membrane is (made) intrinsically catalytically active. This can be done by using the intrinsic catalytic properties of the zeolite or by making the membrane catalytically active. When an active phase is deposited on top of a membrane layer, this is also called a CMR because this becomes part of the composite membrane. In addition to the catalytic activity of the membrane, a catalyst bed can be present (PBCMR). The advantages of a CMR are as follows ... [Pg.217]

A fuel cell consists of an ion-conducting membrane (electrolyte) and two porous catalyst layers (electrodes) in contact with the membrane on either side. The hydrogen oxidation reaction at the anode of the fuel cell yields electrons, which are transported through an external circuit to reach the cathode. At the cathode, electrons are consumed in the oxygen reduction reaction. The circuit is completed by permeation of ions through the membrane. [Pg.77]

The objective of the present study is to develop a cross-flow filtration module operated under low transmembrane pressure drop that can result in high permeate flux, and also to demonstrate the efficient use of such a module to continuously separate wax from ultrafine iron catalyst particles from simulated FTS catalyst/ wax slurry products from an SBCR pilot plant unit. An important goal of this research was to monitor and record cross-flow flux measurements over a longterm time-on-stream (TOS) period (500+ h). Two types (active and passive) of permeate flux maintenance procedures were developed and tested during this study. Depending on the efficiency of different flux maintenance or filter media cleaning procedures employed over the long-term test to stabilize the flux over time, the most efficient procedure can be selected for further development and cost optimization. The effect of mono-olefins and aliphatic alcohols on permeate flux and on the efficiency of the filter membrane for catalyst/wax separation was also studied. [Pg.272]

Similar to screen printing, the spray coating method [95] is widely used for catalyst fabrication, especially in labs. The major difference between the two is that the viscosity of the ink for spray coating is much lower than that for screen printing. The application apparatus can be a manual spray gun or an auto-spraying system with programmed X-Y axes, movable robotic arm, an ink reservoir and supply loop, ink atomization, and a spray nozzle with adjustable flux and pressure. The catalyst ink can be coated on the gas diffusion layer or cast directly on the membrane. To prevent distortion and swelling of the membrane, either it is converted into Na+ form or a vacuum table is used to fix the membrane. The catalyst layer is dried in situ or put into an oven to remove the solvent. [Pg.85]

This chapter gives an overview of the state of affairs in physical theory and molecular modeling of materials for PEECs. The scope encompasses systems suitable for operation at T < 100°C that contain aqueous-based, proton-conducting polymer membranes and catalyst layers based on nanoparticles of Pt. [Pg.347]

The previous discussion asserts that design, fabrication, and implementation of stable and inexpensive materials for membranes and catalyst layers are the most important technological challenges for PEFC developers. A profound insight based on theory and modeling of the pertinent materials will advise us how fuel cell components with optimal specifications can be made and how they can be integrated into operating cells. [Pg.349]

TiOz coated with potassium ferrocyanide proved to be an effective catalyst for the reduction of C02 to formic acid and formaldehyde.169 A very stable and reproducible catalytic system was prepared by immobilizing Ni2+ and Ru2+ complexes into Nation membrane, which was used for the selective reduction of C02 to formic acid.170 Formic acid was again formed when Zn and Co phthalocyanines were adsorbed onto a Nation membrane on irradiation with visible light in acidic aqueous solution containing triethanolamine as a hole scavenger. Cobalt comns (B i2) acting as homogeneous catalysts in acetonitrile-methanol solutions induced the formation of formic acid and CO.172... [Pg.98]

Figure D3.5.10 Effect of charge of interfacial membrane on location and distribution of metal catalyst. Figure D3.5.10 Effect of charge of interfacial membrane on location and distribution of metal catalyst.
As COR and OER occur simultaneously in the cathode, their kinetics are particularly important in evaluating carbon-support corrosion. The kinetics of OER is material-specific, dependent on catalyst composition and electrode fabrication.35,37 -39 A number of OER kinetics studies were done on Pt metal electrodes.37-39 However, there is a lack of OER kinetics data on electrodes made of Pt nano-particles dispersed on carbon supports. Figure 2 shows the measured OER current density with respect to the overpotential defined by Eq. (6).35 The 02 concentration was measured at the exit of a 50-cm2 cell using a gas chromatograph (GC). The 02 evolution rate (= 02 concentration x cathode flow rate) was then converted to the OER current density, assuming 4e /02 molecule. Diluted H2 (10%) and a thicker membrane (50 p,m) were used in the measurement to minimize H2 crossover from anode to cathode, because H2 would react with 02 evolved at the cathode and incur inaccuracy in the measured OER current density. Figure 2 indicates that the OER... [Pg.50]

Membrane technology could offer interesting possibilities in order to overcome these limitations and to improve the advantages of catalysis mediated by the decatungstate by the multiturnover recycling associated to heterogeneous supports, the selectivity tuning as a function of the substrate affinity towards the membrane, the effect of the polymeric microenvironment on catalyst stability and activity. [Pg.280]

To employ the catalysts for 02 evolution in the vesicle systems, it was essential to check whether their selectivity towards evolution of 02 remains high enough after immobilization on the lipid membrane. Shilov, Shafirovich and co-workers prepared [268-271] a membrane-bound catalyst for water oxidation by oxidation of Mn(II) salts in the presence of lipid vesicles. The Mn(IV) hydroxide catalyst... [Pg.53]

The membrane-bound catalysts for water oxidation can also be obtained with other transition metal hydroxides. Gerasimov et al. [272] have shown that illumination of a Ru(bpy) + — persulfate system in the presence of Co(II) and lipid vesicles results in the formation of a colloid catalyst for water oxidation, viz. Co(III) hydroxide, immobilized on the lipid membranes. The same catalyst can be obtained without illumination by Co(II) oxidation with a Ru(bpy)3+ complex in the vesicle suspension. The selectivity of water oxidation with the catalysts thus obtained depends on the nature of the membrane-forming lipid. Switching from the synthetic DPL to the natural eggL the process selectivity decreases by about two orders of magnitude due to consumption of the oxidant for oxidation of organic impurities contained in lipids of natural origin [113]. [Pg.54]

Once good performance results with new membranes, new catalysts and porous or PEM electrodes have been achieved, time stability of the components will be evaluated. Future work will focus on improving cell designs. [Pg.220]

Since water is the byproduct, and also has an undesired inhibitory effect on catalyst activity, it must be separated efficiently from the reaction mixture. To achieve this, both conventional reactive distillation and reactive membrane separation are considered as process alternatives. In the latter process, a Knudsen-membrane is applied. Consequently, the mass transfer matrix [/c] has a diagonal structure and the diagonal elements are the Knudsen-selectivities - that is, the square-roots of the ratios of the molecular weights Mr. [Pg.134]


See other pages where Membrane on catalyst is mentioned: [Pg.500]    [Pg.506]    [Pg.500]    [Pg.506]    [Pg.1566]    [Pg.2098]    [Pg.605]    [Pg.149]    [Pg.141]    [Pg.167]    [Pg.205]    [Pg.496]    [Pg.323]    [Pg.9]    [Pg.12]    [Pg.308]    [Pg.324]    [Pg.492]    [Pg.544]    [Pg.31]    [Pg.32]    [Pg.271]    [Pg.93]    [Pg.354]    [Pg.313]    [Pg.6]    [Pg.88]    [Pg.4]    [Pg.53]    [Pg.12]    [Pg.241]   


SEARCH



Catalyst membranes

© 2024 chempedia.info