Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism with iron

Figure 5.3 Fenton s mechanism with iron(II) salts. Figure 5.3 Fenton s mechanism with iron(II) salts.
Various bifunctional resins are based on acrylic epoxide monomers. Such systems can photopolymerize by the radical and/or cationic mechanism. With iron arene photoinitiators in the presence of an oxidant, radical as well as cationic photopolymerization of these monomers is possible . Onium -type photoinitiators form radical species upon photolysis, as shown in Figs. 3 and 4. The local radical concentration is, however, too low to permit the polymerization of such systems... [Pg.76]

In general, metals corrode in aqueous media by an electrochemical mechanism. With iron, for example, one set of reactions occurs at anode sites of the metal surface and another set of reactions, chemically equivalent to the first, occurs at cathode sites. The over-all anode reaction is... [Pg.380]

Corrosion problems are particularly important when two metals are in contact. The more reactive metal becomes the cathode of the cell and goes into solution when the cell is activated by an electrolyte. A typical cell is shown in Figure 13.7. When the metal in contact with iron is more reactive than iron itself, the iron is protected from corrosion. This is important when mechanical strength... [Pg.399]

In a 500 ml. bolt-head flask, provided with a mechanical stirrer, place 70 ml. of oleum (20 per cent. SO3) and heat it in an oil bath to 70°. By means of a separatory funnel, supported so that the stem is just above the surface of the acid, introduce 41 g. (34 ml.) of nitrobenzene slowly and at such a rate that the temperature of the well-stirred mixture does not rise above 100-105°. When all the nitrobenzene has been introduced, continue the heating at 110-115° for 30 minutes. Remove a test portion and add it to the excess of water. If the odour of nitrobenzene is still apparent, add a further 10 ml. of fuming sulphuric acid, and heat at 110-115° for 15 minutes the reaction mixture should then be free from nitrobenzene. Allow the mixture to cool and pour it with good mechanical stirring on to 200 g. of finely-crushed ice contained in a beaker. AU the nitrobenzenesulphonic acid passes into solution if a little sulphone is present, remove this by filtration. Stir the solution mechanically and add 70 g. of sodium chloride in small portions the sodium salt of m-nitro-benzenesulphonic acid separates as a pasty mass. Continue the stirring for about 30 minutes, allow to stand overnight, filter and press the cake well. The latter will retain sufficient acid to render unnecessary the addition of acid in the subsequent reduction with iron. Spread upon filter paper to dry partially. [Pg.589]

Complexation of bromine with iron(III) bromide makes bromine more elec trophilic and it attacks benzene to give a cyclohexadienyl intermediate as shown m step 1 of the mechanism (Figure 12 6) In step 2 as m nitration and sulfonation loss of a proton from the cyclohexadienyl cation is rapid and gives the product of electrophilic aromatic substitution... [Pg.480]

Barium carbonate of finely controlled particle size reacts in the soHd state when heated with iron oxide to form barium ferrites. Magnetically aligned barium ferrite [11138-11-7] powder can be pressed and sintered into a hard-core permanent magnet which is used in many types of small motors. Alternatively, ground up magnetic powder can be compounded into plastic strips which are used in a variety of appHances as part of the closure mechanism. [Pg.480]

Nickel/silicon alloy (10% silicon, 3% copper, and 87% nickel) is fabricated only as castings and is rather brittle, although it is superior to the iron/silicon alloy with respect to strength and resistance to thermal and mechanical shock. It is comparable to the iron/silicon alloy in corrosion resistance to boiling sulfuric acid solutions at concentrations above 60%. Therefore, it is chosen for this and other arduous duties where its resistance to thermal shock justifies its much higher price compared with iron/silicon alloys. [Pg.76]

It has been seen that iron has an adverse effect because it forms a second phase (insoluble) material in the alloy which acts as an effective local cathode. Sequestering is the technique of adding an alloying addition that will cause an alternative intermetallic compound with iron to form. This compound might form a dross to be removed mechanically. Alternatively the new intermetallic compound could be a less effective cathode in which case removal would not be necessary. [Pg.140]

Calorised and heat-treated mechanically-clad products have coating structures similar to hot-dip aluminised coatings, but the degree of alloying with iron is variable (Fig. 13.5). With Calorised products the surface layers usually contain 25-50% aluminium. [Pg.470]

Analysis of the volumetric effects indicates that as a result of such mechanical activation, iron and manganese are concentrated in the extended part of the crystal, while tantalum and niobium are predominantly collected in the compressed part of the distorted crystal structure. It is interesting to note that this effect is more pronounced in the case of tantalite than it is for columbite, due to the higher rigidity of the former. Akimov and Chernyak [452] concluded that the effect of redistribution of the ions might cause the selective predominant dissolution of iron and manganese during the interaction with sulfuric acid and other acids. [Pg.260]

Nothing is known about the identity of the iron species responsible for dehydrogenation of the substrate. Iron-oxo species such as FeIV=0 or Fem-OOH are postulated as the oxidants in most heme or non-heme iron oxygenases. It has to be considered that any mechanistic model proposed must account not only for the observed stereochemistry but also for the lack of hydroxylation activity and its inability to convert the olefinic substrate. Furthermore, no HppE sequence homo-logue is to be found in protein databases. Further studies should shed more light on the mechanism with which this unique enzyme operates. [Pg.389]

Unexpectedly, neither direct complexation nor the deoxygenated complexes 95 or 96136,137 were observed in the reaction of diphenylthiirene oxide (18a) with iron nonacarbonyl. Instead, the red organosulfur-iron complex 97138 was isolated12, which required the cleavage of three carbon-sulfur bonds in the thiirene oxide system (see equation 33). The mechanism of the formation of 97 from 18a is as yet a matter of speculation. [Pg.412]

The epoxy matrix was filled with iron particles of average diameter df = 150 pm at a volume fraction uf = 0.05. The mechanical and thermal behaviour of the particulate composite was studied in Ref. 8), which gave the following values ... [Pg.157]

The mechanism of the reaction has not been elucidated. Presumably several reactions occur simultaneously. Thiocyanates react with iron(III) salts with the formation of red-colored complexes. In sulfuric acid medium nitrate or nitrite coddize diphenylamine to... [Pg.72]

According to this mechanism only iron(II) reacts with peroxydisulphate and gives an SO4 radical. With respect to reactions of the SO4 radical, reaction (44) becomes insignificant compared with (45) at [As(III)]/[Fe(II)] ratios greater than two, and then Fj will no longer depend on the arsenic(III) concentration. [Pg.539]

A nonuniform distribution of the reactions may arise when the metal s surface is inhomogeneous, particularly when it contains inclusions of other metals. In many cases (e.g., zinc with iron inclusions), the polarization of hydrogen evolution is much lower at the inclusions than at the base metal hence, hydrogen evolution at the inclusions will be faster (Fig. 22.3). Accordingly, the rate of the coupled anodic reaction (dissolution of the base metal) will also be faster. The electrode s OCP will become more positive under these conditions. At such surfaces, the cathodic reaction is concentrated at the inclusions, while the anodic reaction occurs at the base metal. This mechanism is reminiscent of the operation of shorted galvanic couples with spatially separated reactions Metal dissolves from one electrode hydrogen evolves at the other. Hence, such inclusions have been named local cells or microcells. [Pg.382]

Finally, animal, plant and microbial tissues have been shown to contain the iron storage protein ferritin. The animal protein has been extensively studied, but the mechanism of iron binding has not been completely resolved (29). Animal tissues contain, in addition, a type of granule comprised of iron hydroxide, polysaccharide and protein. The latter, called hemosiderin, may represent a depository of excess iron (30). Interestingly, a protein with properties parallel to those of ferritin has been found in a mold. Here the function of the molecule can be examined with the powerful tools of biochemical genetics (31). [Pg.150]

Figure 10.3 (a) Proposed mechanism for induction of NFKB proteins (from Suzuki et al., 1994) (b) interaction with iron metabolism. Reproduced with permission from Cairo and Pietrangelo, 2000, the Biochemical Society. [Pg.284]


See other pages where Mechanism with iron is mentioned: [Pg.128]    [Pg.128]    [Pg.214]    [Pg.540]    [Pg.164]    [Pg.396]    [Pg.309]    [Pg.125]    [Pg.1084]    [Pg.455]    [Pg.211]    [Pg.815]    [Pg.257]    [Pg.288]    [Pg.110]    [Pg.75]    [Pg.201]    [Pg.238]    [Pg.235]    [Pg.99]    [Pg.1819]    [Pg.24]    [Pg.25]    [Pg.96]    [Pg.235]    [Pg.249]    [Pg.258]    [Pg.266]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Iron, lead interactions with mechanisms

© 2024 chempedia.info