Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical properties silica reinforcement

Reinforcing fillers (active) Fumed Silica (Si02) precipitated calcium carbonate (CaCOi) carbon black Thixotropic reinforcing agents (non-slump), adjustment of mechanical properties (cohesion) provide toughness to the elastomer as opposed to brittle materials. [Pg.701]

Recent work has focused on a variety of thermoplastic elastomers and modified thermoplastic polyimides based on the aminopropyl end functionality present in suitably equilibrated polydimethylsiloxanes. Characteristic of these are the urea linked materials described in references 22-25. The chemistry is summarized in Scheme 7. A characteristic stress-strain curve and dynamic mechanical behavior for the urea linked systems in provided in Figures 3 and 4. It was of interest to note that the ultimate properties of the soluble, processible, urea linked copolymers were equivalent to some of the best silica reinforced, chemically crosslinked, silicone rubber... [Pg.186]

The effect of polymer-filler interaction on solvent swelling and dynamic mechanical properties of the sol-gel-derived acrylic rubber (ACM)/silica, epoxi-dized natural rubber (ENR)/silica, and polyvinyl alcohol (PVA)/silica hybrid nanocomposites was described by Bandyopadhyay et al. [27]. Theoretical delineation of the reinforcing mechanism of polymer-layered silicate nanocomposites has been attempted by some authors while studying the micromechanics of the intercalated or exfoliated PNCs [28-31]. Wu et al. [32] verified the modulus reinforcement of rubber/clay nanocomposites using composite theories based on Guth, Halpin-Tsai, and the modified Halpin-Tsai equations. On introduction of a modulus reduction factor (MRF) for the platelet-like fillers, the predicted moduli were found to be closer to the experimental measurements. [Pg.7]

Surface modification of silica, another filler used in the rubber industry, has been reported by Nah et al. [36, 37]. The silica surface was modified by plasma polymerization of acetylene. The modified silica was mixed with SBR to study its performance. They observed an increase in reinforcement with the plasma-modified silica and hence better mechanical properties. They also observed an improvement in the dispersion properties for the plasma-coated silica. The authors explained the observed improvement in properties by a mild crosslinking between plasma-polymerized acetylene and the butadiene part of the SBR matrix. [Pg.180]

Improvement of the mechanical properties of elastomers is usually reached by their reinforcement with fillers. Traditionally, carbon black, silica, metal oxides, some salts and rigid polymers are used. The elastic modulus, tensile strength, and swelling resistence are well increased by such reinforcement. A new approach is based on block copolymerization yielding thermoelastoplastics, i.e. block copolymers with soft (rubbery) and hard (plastic) blocks. The mutual feature of filled rubbers and the thermoelastoplastics is their heterogeneous structure u0). [Pg.68]

IPNs are also attractive for development of materials with enhanced mechanical properties. As PDMS acts as an elastomer, it is of interest to have a thermoplastic second network such as PMMA or polystyrene. Crosslinked PDMS have poor mechanical properties and need to be reinforced with silica. In the IPNs field, they can advantageously be replaced by a second thermoplastic network. On the other hand, if the thermoplastic network is the major component, the PDMS network can confer a partially elastomeric character to the resulting material. Huang et al. [92] studied some sequential IPNs of PDMS and polymethacrylate and varied the ester functionalities the polysiloxane network was swollen with MMA (methyl methacrylate), EMA (ethyl methacrylate) or BuMA (butyl methacrylate). Using DMA the authors determined that the more sterically hindered the substituent, the broader the damping zone of the IPN (Table 2). This damping zone broadness was also found to be dependant on the PDMS content, and atomic force microscopy (AFM) was used to observe the co-continuity of the IPN. [Pg.132]

Reinforcement of elastomers by colloidal fillers, like carbon black or silica, plays an important role in the improvement of mechanical properties of high performance rubber materials. The reinforcing potential is mainly attributed to two effects ... [Pg.12]

Elastomers require, in most applications, to be reinforced by fillers in order to improve their mechanical properties. Carbon black and silica have been used for a long time in the rubber industry to prepare composites with greatly improved properties such as strength, stiffness and wear resistance. These conventional fillers must be used at high loading levels to impart to the material the desired properties (1). The state of filler dispersion and orientation... [Pg.345]

Janes, Neumann and Sethna ° reviewed the general subject of solid lubricant composites in polymers and metals. They pointed out that the reduction in mechanical properties with higher concentrations of solid lubricant can be offset by the use of fibre reinforcement. Glass fibre is probably the most commonly used reinforcing fibre, with carbon fibre as a second choice. Metal and ceramic fibres have been used experimentally to reinforce polymers, but have not apparently been used commercially. To some extent powders such as bronze, lead, silica, alumina, titanium oxide or calcium carbonate can be used to improve compressive modulus, hardness and wear rate. [Pg.119]

Historically, polysiloxane elastomers have been reinforced with micron scale particles such as amorphous inorganic silica to form polysiloxane microcomposites. However, with the continued growth of new fields such as soft nanolithography, flexible polymer electronics and biomedical implant technology, there is an ever increasing demand for polysiloxane materials with better defined, improved and novel physical, chemical and mechanical properties. In line with these trends, researchers have turned towards the development of polysiloxane nanocomposites systems which incorporate a heterogeneous second phase on the nanometer scale. Over the last decade, there has been much interest in polymeric nanocomposite materials and the reader is directed towards the reviews by Alexandre and Dubois (4) or Joshi and Bhupendra (5) on the subject. [Pg.264]

Organic matrices are divided into thermosets and thermoplastics. The main thermoset matrices are polyesters, epoxies, phenolics, and polyimides, polyesters being the most widely used in commercial applications (3,4). Epoxy and polyimide resins are applied in advanced composites for structural aerospace applications (1,5). Thermoplastics Uke polyolefins, nylons, and polyesters are reinforced with short fibers (3). They are known as traditional polymeric matrices. Advanced thermoplastic polymeric matrices like poly(ether ketones) and polysulfones have a higher service temperature than the traditional ones (1,6). They have service properties similar to those of thermoset matrices and are reinforced with continuous fibers. Of course, composites reinforced with discontinuous fibers have weaker mechanical properties than those with continuous fibers. Elastomers are generally reinforced by the addition of carbon black or silica. Although they are reinforced polymers, traditionally they are studied separately due to their singular properties (see Chap. 3). [Pg.657]

The use of silica in rubber mixes cannot be considered as new at all, because this filler has been used in rubber formulations since the beginning of the 20th century (Voet et al., 1977). Silicas are not reinforcing fillers in the proper sense, because silica-reinforced mixes exhibit much lower mechanical properties, particularly considering modulus at break and abrasion resistance. So silicas weren t used as reinforcing fillers but mainly in association with carbon black. [Pg.385]


See other pages where Mechanical properties silica reinforcement is mentioned: [Pg.464]    [Pg.151]    [Pg.144]    [Pg.691]    [Pg.7]    [Pg.75]    [Pg.503]    [Pg.139]    [Pg.364]    [Pg.194]    [Pg.77]    [Pg.104]    [Pg.108]    [Pg.93]    [Pg.328]    [Pg.328]    [Pg.29]    [Pg.378]    [Pg.794]    [Pg.81]    [Pg.369]    [Pg.285]    [Pg.300]    [Pg.618]    [Pg.927]    [Pg.140]    [Pg.1094]    [Pg.698]    [Pg.87]    [Pg.139]    [Pg.927]    [Pg.237]    [Pg.320]    [Pg.40]    [Pg.277]    [Pg.59]    [Pg.207]    [Pg.189]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Mechanical properties reinforcement

Mechanical reinforcement

Mechanism reinforcing

Reinforcement, mechanisms

Reinforcing property

Silica mechanical

Silica reinforcement

Silica, properties

© 2024 chempedia.info