Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measured biological system

A major advance in force measurement was the development by Tabor, Win-terton and Israelachvili of a surface force apparatus (SFA) involving crossed cylinders coated with molecularly smooth cleaved mica sheets [11, 28]. A current version of an apparatus is shown in Fig. VI-4 from Ref. 29. The separation between surfaces is measured interferometrically to a precision of 0.1 nm the surfaces are driven together with piezoelectric transducers. The combination of a stiff double-cantilever spring with one of a number of measuring leaf springs provides force resolution down to 10 dyn (10 N). Since its development, several groups have used the SFA to measure the retarded and unretarded dispersion forces, electrostatic repulsions in a variety of electrolytes, structural and solvation forces (see below), and numerous studies of polymeric and biological systems. [Pg.236]

Interactions between macromolecules (protems, lipids, DNA,.. . ) or biological structures (e.g. membranes) are considerably more complex than the interactions described m the two preceding paragraphs. The sum of all biological mteractions at the molecular level is the basis of the complex mechanisms of life. In addition to computer simulations, direct force measurements [98], especially the surface forces apparatus, represent an invaluable tool to help understand the molecular interactions in biological systems. [Pg.1741]

Moser, C.C., Dutton, P.L. Biological electron transfer measurement, mechanism, engineering requirements. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds. Springer, Berlin (1996) 201-214. [Pg.33]

Electroultrafiltration (EUF) combines forced-flow electrophoresis (see Electroseparations,electrophoresis) with ultrafiltration to control or eliminate the gel-polarization layer (45—47). Suspended colloidal particles have electrophoretic mobilities measured by a zeta potential (see Colloids Elotation). Most naturally occurring suspensoids (eg, clay, PVC latex, and biological systems), emulsions, and protein solutes are negatively charged. Placing an electric field across an ultrafiltration membrane faciUtates transport of retained species away from the membrane surface. Thus, the retention of partially rejected solutes can be dramatically improved (see Electrodialysis). [Pg.299]

Measurements of the rate of change in concentration of oxidizable chemicals in aerated vessels have questionable value for assessing rates with biological systems. Not only are flow patterns and bubble sizes different for biological systems, but surface active agents and... [Pg.2139]

The activity of antioxidants in food [ 1 ] emulsions and in some biological systems [2] is depends on a multitude of factors including the localisation of the antioxidant in the different phases of the system. The aim of this study is determining antioxidant distributions in model food emulsions. For the purpose, we measured electrochemically the rate constant of hexadecylbenzenediazonium tetrafluorborate (16-ArN,BF ) with the antioxidant, and applied the pseudophase kinetic model to interpret the results. [Pg.139]

Computer simulation can be used to provide a stepping stone between experiment and the simplified analytical descriptions of the physical behavior of biological systems. But before gaining the right to do this, we must first validate a simulation by direct comparison with experiment. To do this we must compare physical quantities that are measurable or derivable from measurements with the same quantities derived from simulation. If the quantities agree, we then have some justification for using the detailed information present in the simulation to interpret the experiments. [Pg.238]

This chapter introduces the first law of thermodynamics and its applications in three main parts. The first part introduces the basic concepts of thermodynamics and the experimental basis of the first law. The second part introduces enthalpy as a measure of the energy transferred as heat during physical changes at constant pressure. The third part shows how the concept of enthalpy is applied to a variety of chemical changes, an important aspect of bioenergetics, the use of energy in biological systems. [Pg.336]

Fluorescent materials are very important in medical research. Dyes such as fluorescein (21) can be attached to protein molecules, and the protein can be traced in a biological system by exciting the fluorescein and looking for its emissions. The use of a fluorescent material allows the detection of much smaller concentrations than would otherwise be possible. Because fluorescent materials can be activated by radioactivity, they are also used in scintillation counters to measure radiation (see Box 17.2). [Pg.768]

For reactors with free turbulent flow without dominant boundary layer flows or gas/hquid interfaces (due to rising gas bubbles) such as stirred reactors with bafQes, all used model particle systems and also many biological systems produce similar results, and it may therefore be assumed that these results are also applicable to other particle systems. For stirred tanks in particular, the stress produced by impellers of various types can be predicted with the aid of a geometrical function (Eq. (20)) derived from the results of the measurements. Impellers with a large blade area in relation to the tank dimensions produce less shear, because of their uniform power input, in contrast to small and especially axial-flow impellers, such as propellers, and all kinds of inclined-blade impellers. [Pg.80]

This strnctnring of liqnids into discrete layers when confined by a solid surface has been more readily observable in liquid systems other than water [1,55]. In fact, such solvation forces in water, also known as hydration forces, have been notoriously difficult to measure due to the small size of the water molecule and the ease with which trace amounts of contamination can affect the ordering. However, hydration forces are thought to be influential in many adhesive processes. In colloidal and biological systems, the idea that the hydration layer mnst be overcome before two molecules, colloidal particles, or membranes can adhere to each other is prevalent. This implies that factors affecting the water structure, such as the presence of salts, can also control adhesive processes. [Pg.37]

Gutteridge, J.M.C. and Halliwell, B. (1990). The measurement and mechanism of lipid peroxidation in biological systems. TIBS 15, 129-135. [Pg.164]

In Ref. 30, the transfer of tetraethylammonium (TEA ) across nonpolarizable DCE-water interface was used as a model experimental system. No attempt to measure kinetics of the rapid TEA+ transfer was made because of the lack of suitable quantitative theory for IT feedback mode. Such theory must take into account both finite quasirever-sible IT kinetics at the ITIES and a small RG value for the pipette tip. The mass transfer rate for IT experiments by SECM is similar to that for heterogeneous ET measurements, and the standard rate constants of the order of 1 cm/s should be accessible. This technique should be most useful for probing IT rates in biological systems and polymer films. [Pg.398]

First described in 1926 by Perrin [16], the theory was greatly expanded by Weber [17], who developed the first instrumentation for the measurement of FP. Dandliker [18] expanded FP into biological systems such as antigen-antibody reactions and hormone-receptor interactions. Jolley [19] developed FP into a commercial system for monitoring of therapeutic drug levels and the detection of drugs of abuse in human body fluids. [Pg.38]

An experimentally controlled biochemical or biological system used for the quantitative analysis of perturbations imposed by a test sample (2) a set of operations having the object of determining the value of a quantity. In analytical chemistry, this term is synonymous with measurement. [Pg.73]

The spectra we have so far discussed were recorded using CDC13> the best allround solvent for organic molecules. However, many molecules, especially biomolecules, are only soluble in water biological systems often remain stable only in aqueous solution. Thus NMR measurements in water are extremely important our model compound is also water-soluble, so that we can use it to demonstrate some important experiments. [Pg.10]

Eaton, S. S. and G. R. Eaton, Eds. (2000). Distance measurement in biological systems by EPR. Biological Magnetic Resonance. New York Kluwer Academic. [Pg.186]

As in many fields of research, new tools and techniques for measuring carotenoids in various systems are critical to support research progress. Several chapters discuss new methodologies to measure carotenoids (see Chapter 4), carotenoid metabolites/radicals (see Chapter 9), or carotenoids in vivo in complex biological systems, especially in the human eye (e.g., see Chapters 5 and 6). Other chapters describe the oxygenase enzymes that are essential components of carotenoid metabolism to active metabolites (see Chapter 19). The study of active metabolites includes the in-depth evaluation of carotenoid cleavage products (see Chapter 11) and carotenoid radicals (see Chapter 14) that may account for some of the biological actions observed for these unique substances. [Pg.557]


See other pages where Measured biological system is mentioned: [Pg.284]    [Pg.284]    [Pg.1904]    [Pg.1914]    [Pg.2483]    [Pg.2846]    [Pg.2898]    [Pg.171]    [Pg.134]    [Pg.391]    [Pg.354]    [Pg.93]    [Pg.28]    [Pg.6]    [Pg.9]    [Pg.16]    [Pg.95]    [Pg.486]    [Pg.145]    [Pg.56]    [Pg.273]    [Pg.397]    [Pg.138]    [Pg.418]    [Pg.500]    [Pg.4]    [Pg.3]    [Pg.9]    [Pg.649]    [Pg.713]    [Pg.115]    [Pg.148]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Biological measurement

Measurement systems

Measures Systems

© 2024 chempedia.info