Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrix resin thermoplastic resins

Currendy, epoxy resins (qv) constitute over 90% of the matrix resin material used in advanced composites. The total usage of advanced composites is expected to grow to around 45,500 t by the year 2000, with the total resin usage around 18,000 t in 2000. Epoxy resins are expected to stiH constitute about 80% of the total matrix-resin-systems market in 2000. The largest share of the remaining market will be divided between bismaleimides and polyimide systems (12 to 15%) and what are classified as other polymers, including thermoplastics and thermoset resins other than epoxies, bismaleimides, cyanate esters, and polyimide systems (see Composites,polymer-matrix-thermoplastics). [Pg.19]

StructurPly I and II by Multi-Axial are thermoplastic matrix resin prepregs used in the construction of primary-load-carrying composite structures. Unlike the few hours typically required by the thermoset resin materials to cure, StructurPly needs a few minutes at 196°C. [Pg.842]

The primary resin of interest is epoxy. Carbon-fiber-epoxy composites represent about 90% of CFRP production. The attractions of epoxy resins are that they polymerize without the generation of condensation products that can cause porosity, they exhibit little volumetric shrinkage during cure which reduces internal stresses, and they are resistant to most chemical environments. Other matrix resins of interest for carbon fibers include the thermosetting phenolics, polyimides, and polybismaleimides, as well as high-temperature thermoplastics such as polyether ether ketone (PEEK), polyethersulfone (PES), and polyphenylene sulfide. [Pg.500]

In most applications, polyester and vinyl ester resins are used as the matrix materials. Epoxies are also used, although they require longer cure times and do not release easily from the pultrusion dies. Hence, thermosetting resins are most commonly used with pultrusion, although some high-performance thermoplastics such as PEEK and polysulfone can also be accommodated. In addition to the resin, the resin bath may contain a curing agent (initiator, cf. Section 3.3.1.2), colorants, ultraviolet stabilizer, and fire retardant. [Pg.796]

The function of the resin matrix material in filament-wound structures is to help distribute the load, maintain proper fiber position, control composite mechanical and chemical properties, and provide interlaminar shear strength. Either a thermosetting or a thermoplastic resin material may be selected. Thermosetting resins may be selected for application in a wetwinding process or as part of a prepreg resin system. [Pg.394]

Matrix materials for commercial composites are mainly liquid thermosetting resins such as polyesters, vinyl esters, epoxy resins, and bismaleimide resins. Thermoplastic composites are made from polyamides, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polysulfone, polyetherim-ide (PEI), and polyamide-imide (PAI). [Pg.207]

Composite In polymer technology a combination of a polymeric matrix and a reinforcing fiber with properties that the component materials do not have. The most common matrix resins are unsaturated thermosetting polyesters and epoxies, and reinforcing fibers are glass, carbon, and aramid fibers. The reinforcing fibers may be continuous or discontinuous. Some matrix resins are thermoplastics. [Pg.252]

The reinforcing fibers may be continuous or discontinuous. Some matrix resins are thermoplastics. [Pg.203]

As can be seen from the results, the composite formed from monomer/-polymer 114a with Celion G30-500 8HS fabric exhibited excellent mechanical properties [28], To a first approximation it would appear that the inherent fracture toughness of the matrix resin has been carried over to the composite panels. The CAI (compressive strength after impact) and OHC (open hole compression) tests are a direct measurements of the toughness of the composite part, the value of 332 MPa for the CAI compares very favorably to the value of 300 MPa typical for the thermoplastic composites. The OHC values under hot-wet test conditions would seem to indicate that the composite has very good retention of its mechanical properties at both 177°C and 203 °C. [Pg.63]

Addition poly(imide) oligomers are used as matrix resins for high performance composites based on glass-, carbon- and aramide fibers. The world wide market for advanced composites and adhesives was about 70 million in 1990. This amounted to approximately 30-40 million in resin sales. Currently, epoxy resins constitute over 90% of the matrix resin materials in advanced composites. The remaining 10% are unsaturated polyester and vinylester for the low temperature applications and cyanate esters and addition poly(imides) for high temperatures. More recently thermoplastics have become important and materials such as polyimides and poly(arylene ether) are becoming more competitive with addition polyimides. [Pg.167]

Polymer chemistry is important in obtaining adhesion to the glass surface (Figure 10). The tensile reinforcement factor—the ratio of tensile strengths of the reinforced system to the matrix resin—is used as a measure of adhesion. Two dissimilar polymers, polypropylene and nylon, are used to illustrate the importance of polymer chemistry. Polypropylene is an inherently difficult polymer to reinforce because of its nonpolar nature and lack of reactivity. Nylon, on the other hand, is highly polar and is one of the easiest thermoplastics to reinforce. The modified poly-... [Pg.477]

Thermoplastic matrix composites are generally employed where high-volume and economic considerations exist such as in the automotive and decorative paneling industries. Thermoplastic resin-based composites range from high-priced polyimide, polyethersul-fone, and polyetheretherketone to the more affordable nylon, acetal, and polycarbonate resins. Practically all thermoplastics are available in glass-reinforced grades. [Pg.379]

Reinforced thermoplastic parts are generally abraded and cleaned prior to adhesive bonding. However, special surface treatment such as used on the thermoplastic resin matrix may be necessary for optimum strength. Care must be taken so that the treatment chemicals do not wick into the composite material and cause degradation. It may not be a good idea to use chemical surface treatment without first verifying that the treatment does not degrade the substrate. [Pg.380]

Polyimides for microelectronics use are of two basic types. The most commonly used commercial materials (for example, from Dupont and Hitachi) are condensation polyimides, formed from imidization of a spin-cast film of soluble polyamic acid precursor to create an intractable solid film. Fully imidized thermoplastic polyimides are also available for use as adhesives (for example, the LARC-TPI material), and when thermally or photo-crosslink able, also as passivants and interlevel insulators, and as matrix resins for fiber-reinforced-composites, such as in circuit boards. Flexible circuits are made from Kapton polyimide film laminated with copper. The diversity of materials is very large readers seeking additional information are referred to the cited review articles [1-3,6] and to the proceedings of the two International Conferences on Polyimides [4,5]. [Pg.428]


See other pages where Matrix resin thermoplastic resins is mentioned: [Pg.209]    [Pg.388]    [Pg.309]    [Pg.74]    [Pg.307]    [Pg.32]    [Pg.35]    [Pg.35]    [Pg.35]    [Pg.585]    [Pg.685]    [Pg.814]    [Pg.112]    [Pg.797]    [Pg.460]    [Pg.252]    [Pg.554]    [Pg.556]    [Pg.557]    [Pg.8]    [Pg.178]    [Pg.339]    [Pg.339]    [Pg.434]    [Pg.208]    [Pg.210]    [Pg.236]    [Pg.197]    [Pg.285]    [Pg.316]    [Pg.11]    [Pg.469]    [Pg.456]    [Pg.283]    [Pg.74]    [Pg.182]   
See also in sourсe #XX -- [ Pg.146 , Pg.147 , Pg.148 , Pg.149 , Pg.150 ]




SEARCH



Matrix thermoplastic

Resin matrices, thermoplastic

Resin matrices, thermoplastic

Resin matrix

Thermoplastic resin

© 2024 chempedia.info