Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material Properties of Solids

The material properties of solids are affected by a number of complex factors. In a gas-solid flow, the particles are subjected to adsorption, electrification, various types of deformation (elastic, plastic, elastoplastic, or fracture), thermal conduction and radiation, and stresses induced by gas-solid interactions and solid-solid collisions. In addition, the particles may also be subjected to various field forces such as magnetic, electrostatic, and gravitational forces, as well as short-range forces such as van der Waals forces, which may affect the motion of particles. [Pg.24]

In this section, we briefly discuss several aspects of the material properties of solids that are of interest to gas-solid flow applications. They include physical adsorption, deformation [Pg.24]


Measures viscoelastic material properties of solid materials as a function of temperature, time, frequency, stress, and strain Creep and stress relaxation measurements can be performed Broad modulus range lO -lO Pa with high level of precision... [Pg.38]

Computational solid-state physics and chemistry are vibrant areas of research. The all-electron methods for high-accuracy electronic stnicture calculations mentioned in section B3.2.3.2 are in active development, and with PAW, an efficient new all-electron method has recently been introduced. Ever more powerfiil computers enable more detailed predictions on systems of increasing size. At the same time, new, more complex materials require methods that are able to describe their large unit cells and diverse atomic make-up. Here, the new orbital-free DFT method may lead the way. More powerful teclmiques are also necessary for the accurate treatment of surfaces and their interaction with atoms and, possibly complex, molecules. Combined with recent progress in embedding theory, these developments make possible increasingly sophisticated predictions of the quantum structural properties of solids and solid surfaces. [Pg.2228]

The study of the multifarious magnetic properties of solids, followed in due course by the sophisticated control of those properties, has for a century been a central concern both of physicists and of materials scientists. The history of magnetism illustrates several features of modern materials science. [Pg.140]

In many cases, less intense pressure or stress waves are encountered in which times to achieve peak pressure may be hundreds of nanoseconds or more. The study of solids under these conditions can be the source of mechanical, physical, and chemical properties of solid materials at large strain, high pressure, and high strain rates. [Pg.3]

Nonstoichiometric oxide phases are of great importance in semiconductor devices, in heterogeneous catalysis and in understanding photoelectric, thermoelectric, magnetic and diffusional properties of solids. They have been used in thermistors, photoelectric cells, rectifiers, transistors, phosphors, luminescent materials and computer components (ferrites, etc.). They are cmcially implicated in reactions at electrode surfaces, the performance of batteries, the tarnishing and corrosion of metals, and many other reactions of significance in catalysis. ... [Pg.644]

When trying to understand and to manipulate matter and materials, chemistry does not start by looking at the natural world in all its complexity. Rather, it seeks to establish what have been termed exemplar phenomena ideal or simplified examples that are capable of investigation with the tools available at the time (Gilbert, Borrlter, Elmer, 2000). This level consists of representatiorrs of the empirical properties of solids, liquids (taken to include solutions, especially aqueous solutiorts), colloids, gases and aerosols. These properties are perceptible in chemistry laboratories and in everyday life and are therefore able to be meastrred. Examples of such properties are mass, density, concentration, pH, temperatrrre and osmotic presstrre. [Pg.5]

This chapter describes some of the properties of solids that affect transport across phases and membranes, with an emphasis on biological membranes. Four aspects are addressed. They include a comparison of crystalline and amorphous forms of the drug, transitions between phases, polymorphism, and hydration. With respect to transport, the major effect of each of these properties is on the apparent solubility, which then affects dissolution and consequently transport. There is often an opposite effect on the stability of the material. Generally, highly crystalline substances are more stable but have lower free energy, solubility, and dissolution characteristics than less crystalline substances. In some situations, this lower solubility and consequent dissolution rate will result in reduced bioavailability. [Pg.586]

Water uptake causes a host of problems in drug products and the inactive and active ingredients contained in them. Moisture uptake has been shown to be an important factor in the decomposition of drug substances [1-8]. Moisture has also been shown to change surface properties of solids [9,10], alter flow characteristics of powders [11,12], and affect the compaction properties of solids [13]. This chapter discusses various mathematical models that can be used to describe moisture uptake by deliquescent materials. [Pg.698]

This section discusses the techniques used to characterize the physical properties of solid catalysts. In industrial practice, the chemical engineer who anticipates the use of these catalysts in developing new or improved processes must effectively combine theoretical models, physical measurements, and empirical information on the behavior of catalysts manufactured in similar ways in order to be able to predict how these materials will behave. The complex models are beyond the scope of this text, but the principles involved are readily illustrated by the simplest model. This model requires the specific surface area, the void volume per gram, and the gross geometric properties of the catalyst pellet as input. [Pg.192]

The XRD patterns demonstrated that the MCM-22 zeolites were well crystallized and pillars have been created in the MCM-36 sample, respectively. Thus, the last material exhibited a typical intense peak at 29 2°, corresponding to a Aspacing of 4 nm. The textural properties of solids (Table 1) indicated that the pillaring in MCM-36 resulted in increases in BET specific surface area and external surface area compared with the MCM-22 zeolite. [Pg.386]

The interaction of microwaves with solid materials has proven attractive for the preparation and activation of heterogeneous catalysts. It has been suggested that micro-wave irradiation modifies the catalytic properties of solid catalysts, resulting in increasing rates of chemical reactions. It is evident that microwave irradiation creates catalysts with different structures, activity, and/or selectivity. Current studies document a growing interest in the preparation of microwave-assisted catalysts and in the favorable influence of microwaves on catalytic reactions. [Pg.347]


See other pages where Material Properties of Solids is mentioned: [Pg.24]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.2]    [Pg.24]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.2]    [Pg.2898]    [Pg.461]    [Pg.469]    [Pg.1886]    [Pg.76]    [Pg.228]    [Pg.2]    [Pg.4]    [Pg.314]    [Pg.87]    [Pg.11]    [Pg.85]    [Pg.147]    [Pg.302]    [Pg.52]    [Pg.230]    [Pg.9]    [Pg.314]    [Pg.696]    [Pg.155]    [Pg.40]    [Pg.112]    [Pg.119]    [Pg.29]    [Pg.504]   


SEARCH



Properties and Applications of Sol-Gel Materials Functionalized Porous Amorphous Solids (Monoliths)

Solid materials, properties

Solids properties

© 2024 chempedia.info