Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material performance characteristics

High structure-forming activity of nanostructures allows their use for modification of materials. It is known that the modification of different materials with minute amounts of nanostmctures improves material performance characteristics. At the same time, the mechanism of such influence of nanoforms on the stmcture and properties of materials has not been fully clarified yet. In the present chapter, explanations of the process are presented based on the XPS results using the modification of polymer systems as an example. [Pg.188]

Lamina (layer, ply) The arrangement of unidirectional or multidirectional fibers in a matrix to form a thin layer is called a layer, ply, or lamina of composite material. In general, several such layers are bonded together, with layer orientations chosen to form a single multilayered sheet having optimum material performance characteristics tailored for specific loading and environmental conditions. Three common types of lamina are unidirectional, woven, and random mat shown schematically in Figure 8.1. [Pg.162]

Another important class of dryer is the fluidized-bed dryers. Some designs combine spray and fluidized-bed dryers. Choice between dryers is usually based on practicalities such as the materials handling characteristics, product decomposition, product physical form (e.g., if a porous granular material is required), etc. Also, dryer efficiency can be used to compare the performance of different dryer designs. This is usually defined as follows -. [Pg.91]

Black Powder. Black powder is mainly used as an igniter for nitrocellulose gun propellant, and to some extent in safety blasting fuse, delay fuses, and in firecrackers. Potassium nitrate black powder (74 wt %, 15.6 wt % carbon, 10.4 wt % sulfur) is used for military appHcations. The slower-burning, less cosdy, and more hygroscopic sodium nitrate black powder (71.0 wt %, 16.5 wt % carbon, 12.5 wt % sulfur) is used industrially. The reaction products of black powder are complex (Table 12) and change with the conditions of initia tion, confinement, and density. The reported thermochemical and performance characteristics vary greatly and depend on the source of material, its physical form, and the method of determination. Typical values are Hsted in Table 13. [Pg.50]

The ratio of stress to strain in the initial linear portion of the stress—strain curve indicates the abiUty of a material to resist deformation and return to its original form. This modulus of elasticity, or Young s modulus, is related to many of the mechanical performance characteristics of textile products. The modulus of elasticity can be affected by drawing, ie, elongating the fiber environment, ie, wet or dry, temperature or other procedures. Values for commercial acetate and triacetate fibers are generally in the 2.2—4.0 N/tex (25—45 gf/den) range. [Pg.292]

Addition Polymers. The most commonly referenced reaction of isocyanates iavolves their addition to polyhydroxyl, polyamine, or polycarboxyhc acid compounds to yield addition polymers. Due to the wide diversity of raw material characteristics and the broad range of functionahty, polyurethane polymers having a wide range of processiag and performance characteristics are available. [Pg.451]

CH2—CI2—) —(—CF2— CFH—) (39). Ceramic crystals have a higher piezoelectric efficiency. Their high acoustic impedance compared to body tissues necessitates impedance matching layers between the piezoelectric and the tissue. These layers are similar in function to the antireflective coatings on a lens. Polymer piezoelectric materials possess a more favorable impedance relative to body tissues but have poorer performance characteristics. Newer transducer materials are piezoelectric composites containing ceramic crystals embedded in a polymer matrix (see Composite materials, polymer-MATRIX Piezoelectrics). [Pg.52]

Nondestmctive tests differ from methods of laboratory analysis and testing where specimens are generally sectioned, broken, damaged, or destroyed. Nondestmctive tests can be performed on materials, components, and stmctures or systems that actually are to be used. Thus, effective use of NDE requires engineering knowledge of the stmcture, the performance characteristics, and service environment, as well as the test method. More complete information on all of the topics discussed herein are available (1 6). [Pg.123]

The relation of equation 21 for similar centrifuges requires identical sedimentation performance characteristics when operating on the same material. [Pg.401]

Because of the complexity of designs and performance characteristics, it is difficult to select the optimum atomizer for a given appHcation. The best approach is to consult and work with atomizer manufacturers. Their technical staffs are familiar with diverse appHcations and can provide valuable assistance. However, they will usually require the foUowing information properties of the Hquid to be atomized, eg, density, viscosity, and surface tension operating conditions, such as flow rate, pressure, and temperature range required mean droplet size and size distribution desired spray pattern spray angle requirement ambient environment flow field velocity requirements dimensional restrictions flow rate tolerance material to be used for atomizer constmction cost and safety considerations. [Pg.334]

The most effective and widely used dispersants are low molecular weight anionic polymers. Dispersion technology has advanced to the point at which polymers are designed for specific classes of foulants or for a broad spectmm of materials. Acrylate-based polymers are widely used as dispersants. They have advanced from simple homopolymers of acryflc acid to more advanced copolymers and terpolymers. The performance characteristics of the acrylate polymers are a function of their molecular weight and stmcture, along with the types of monomeric units incorporated into the polymer backbone. [Pg.271]

Fluid Specifications. The performance characteristics of all antifreeze solutions are governed by fluid specifications, that have been developed over the years by industry standards committees, such as the American Society for Testing and Materials (ASTM) and the Society of Automotive Engineers (SAE). Additionally, most engine and/or cooling system manufacturers have thek own compositional specifications to which the fluids must conform. [Pg.190]

The performance characteristics of ceramic sensors are defined by one or more of the foUowing material properties bulk, grain boundary, interface, or surface. Sensor response arises from the nonelectrical input because the environmental variable effects charge generation and transport in the sensor material. [Pg.345]

This discussion will address needs, applications, performance characteristics, and design considerations for LVHV exhaust ventilation. The applications are primarily for dust control. LVHV systems can be effective for protecting workers from dust exposures and for recovering valuable process materials. The equipment, excepting the nozzles, involves technology that is the same as for large central vacuum cleaning systems. [Pg.852]

Occasionally, samples are run that adsorb onto the packing material. Generally, if one of the performance characteristics of the column changes by 10% or more, it is prudent to clean the column. These performance characteristics are (1) asymmetry factor, retention time, resolution, and theoretical plates. [Pg.134]

A method for the estimation of composite material performance from the characteristics of fillers and the matrices and from the configuration of filler is generally called the law of mixture. In the most basic form of the law of mixture, the characteristics of a composite material are represented as a function of characteristics of constituent components and their volume fractions, as shown in Fig. 3. For a composite material (characteris-ticsiA f) that consists of component A (characteristics Xa, volume fraction ) and component B (characteristics Xf, volume fraction b), the basic formulae of the law of mixture are as follows ... [Pg.815]

Another area of success has been in applied materials research. Because of the integral nature of materials to advances in energy production and consumption, the laboratories have developed a number of toughened ceramics. When used as a replacement for steel, they will improve the energy performance characteristics of high-temperature applications for components of combined-cycle power plants and vehicle engines. [Pg.820]


See other pages where Material performance characteristics is mentioned: [Pg.862]    [Pg.131]    [Pg.1034]    [Pg.7947]    [Pg.350]    [Pg.862]    [Pg.131]    [Pg.1034]    [Pg.7947]    [Pg.350]    [Pg.2]    [Pg.69]    [Pg.70]    [Pg.335]    [Pg.248]    [Pg.436]    [Pg.40]    [Pg.89]    [Pg.186]    [Pg.521]    [Pg.362]    [Pg.1092]    [Pg.1768]    [Pg.512]    [Pg.2]    [Pg.519]    [Pg.389]    [Pg.355]    [Pg.697]    [Pg.101]    [Pg.169]    [Pg.299]    [Pg.600]    [Pg.28]    [Pg.77]    [Pg.135]    [Pg.3]    [Pg.305]    [Pg.154]   
See also in sourсe #XX -- [ Pg.599 ]




SEARCH



Characteristics material

Friction materials performance characteristics

Material performance

Performance characteristics

© 2024 chempedia.info