Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material chemical reactors

The most effective phosphoms production technology uses a submerged arc furnace. The submerged arc furnace performs three functions chemical reactor, heat-exchanger, and gas—soHd filter, respectively, each of which requires a significant amount of preparation for the soHd furnace feed materials. [Pg.348]

Ratio and Multiplicative Feedforward Control. In many physical and chemical processes and portions thereof, it is important to maintain a desired ratio between certain input (independent) variables in order to control certain output (dependent) variables (1,3,6). For example, it is important to maintain the ratio of reactants in certain chemical reactors to control conversion and selectivity the ratio of energy input to material input in a distillation column to control separation the ratio of energy input to material flow in a process heater to control the outlet temperature the fuel—air ratio to ensure proper combustion in a furnace and the ratio of blending components in a blending process. Indeed, the value of maintaining the ratio of independent variables in order more easily to control an output variable occurs in virtually every class of unit operation. [Pg.71]

Product Recovery. Comparison of the electrochemical cell to a chemical reactor shows the electrochemical cell to have two general features that impact product recovery. CeU product is usuaUy Uquid, can be aqueous, and is likely to contain electrolyte. In addition, there is a second product from the counter electrode, even if this is only a gas. Electrolyte conservation and purity are usual requirements. Because product separation from the starting material may be difficult, use of reaction to completion is desirable ceUs would be mn batch or plug flow. The water balance over the whole flow sheet needs to be considered, especiaUy for divided ceUs where membranes transport a number of moles of water per Earaday. At the inception of a proposed electroorganic process, the product recovery and refining should be included in the evaluation to determine tme viabUity. Thus early ceU work needs to be carried out with the preferred electrolyte/solvent and conversion. The economic aspects of product recovery strategies have been discussed (89). Some process flow sheets are also available (61). [Pg.95]

Problem Definition InteUigent selection of a separator requires a careful and complete statement of the nature of the separation problem. Focusing narrowly on the specific problem, however, is not sufficient, especi ly if the separation is to be one of the steps in a new process. Instead, the problem must be defined as broadly as possible, beginning with the chemical reactor or other source of material to be separated and ending with the separated materials in their desired final form. In this way the influence of preceding and subsequent process steps on the separation step will be iUuminated. Sometimes, of course, the new separator is proposed to replace an existing unit the new separator must then fit into the current process and accept feed materials of more or less fixed characteristics. At other times the separator is only one item in a train of new equipment, all parts of which must work in harmony if the separator is to be effective. [Pg.1749]

In contrast to segregated flow, in which the mixing occurs only after each sidestream leaves the vessel, under maximum mixedness mixing of all molecules having a certain period remaining in the vessel (the life expectation) occurs at the time of introduction of fresh material. These two mixing extremes—as late as possible and as soon as possible, both consistent with the same RTD—correspond to performance extremes of the vessel as a chemical reactor. [Pg.2087]

Adiabatic Reaction Temperature (T ). The concept of adiabatic or theoretical reaction temperature (T j) plays an important role in the design of chemical reactors, gas furnaces, and other process equipment to handle highly exothermic reactions such as combustion. T is defined as the final temperature attained by the reaction mixture at the completion of a chemical reaction carried out under adiabatic conditions in a closed system at constant pressure. Theoretically, this is the maximum temperature achieved by the products when stoichiometric quantities of reactants are completely converted into products in an adiabatic reactor. In general, T is a function of the initial temperature (T) of the reactants and their relative amounts as well as the presence of any nonreactive (inert) materials. T is also dependent on the extent of completion of the reaction. In actual experiments, it is very unlikely that the theoretical maximum values of T can be realized, but the calculated results do provide an idealized basis for comparison of the thermal effects resulting from exothermic reactions. Lower feed temperatures (T), presence of inerts and excess reactants, and incomplete conversion tend to reduce the value of T. The term theoretical or adiabatic flame temperature (T,, ) is preferred over T in dealing exclusively with the combustion of fuels. [Pg.359]

In a chemical production process at least one of the unit operations (the chemical reactor) is the place in which chemical conversion takes place. However, the chemical upstream reactor is proceeded by a series of unit operations in which the new materials are downstream prepared (the upstream operations). After conversion has taken place, the products are operations subjected to a further series of unit operations (the downstream operations). These downstream operations include product recovery and purification steps. A typical example of a production process is illustrated in Figure 1.1. [Pg.4]

The BP Chemicals polymer cracking process is based at Grangemouth in Scotland and uses mixed plastics as the raw material. The reactor uses a fluidised bed which operates at 500 °C in the absence of air, and under these conditions the plastics crack thermally to yield hydrocarbons. These vaporize and are carried away from the bed with the fluidising gas. Solid impurities such as metals from PVC stabilisers accumulate in the bed or are carried away in the hot gas to be captured by a cyclone further along in the plant. PVC decomposes to HCl and this is neutralized on a solid lime absorbent to yield CaCl2 which is disposed of in landfill. The purified gas is cooled to condense most of the hydrocarbon which can be employed as commercially useful distillate feedstock. The light hydrocarbons which are less easy to condense are compressed, reheated and recycled as fluidising gas. [Pg.167]

The general material balance of Section 1.1 contains an accumulation term that enables its use for unsteady-state reactors. This term is used to solve steady-state design problems by the method of false transients. We turn now to solving real transients. The great majority of chemical reactors are designed for steady-state operation. However, even steady-state reactors must occasionally start up and shut down. Also, an understanding of process dynamics is necessary to design the control systems needed to handle upsets and to enable operation at steady states that would otherwise be unstable. [Pg.517]

I 72 Intensification of Heat Transfer in Chemical Reactors Heat Exchanger Reactors Table 12.5 Effusivity values according to the reactor material. [Pg.270]

In the pharmaceutical industry, and to some extent the fine chemicals industry, an important advantage of a batch reactor is traceability. The product from a particular batch will have a uniform consistency, and can be uniquely labelled and readily traced. In contrast, the product from a continuous process may change gradually over time, and it is therefore more difficult to trace a particular impurity or fault in the material. Batch reactors are, however, rarely the most efficient in terms of throughput and energy use when the reaction kinetics are fast. Batch systems are also much more labour intensive than continuous processes. [Pg.238]

Iron has been the dominant structural material of modem times, and despite the growth in importance of aluminum and plastics, iron still ranks first in total use. Worldwide production of steel (iron strengthened by additives) is on the order of 700 million tons per year. The most important iron ores are two oxides, hematite (Fc2 O3) and magnetite (Fc3 O4). The production of iron from its ores involves several chemical processes that take place in a blast furnace. As shown in Figure 20-22. this is an enormous chemical reactor where heating, reduction, and purification all occur together. [Pg.1467]

Selection of Corrosion-Resistant Materials The concentrated sofutions of acids, alkalies, or salts, salt melts, and the like used as electrolytes in reactors as a rule are highly corrosive, particularly so at elevated temperatures. Hence, the design materials, both metallic and nonmetallic, should have a sufficiently high corrosion and chemical resistance. Low-alloy steels are a universal structural material for reactors with alkaline solutions, whereas for reactors with acidic solutions, high-alloy steels and other expensive materials must be used. Polymers, including highly stable fluoropolymers such as PTFE, become more and more common as structural materials for reactors. Corrosion problems are of particular importance, of course, when materials for nonconsumable electrodes (and especially anodes) are selected, which must be sufficiently stable and at the same time catalytically active. [Pg.329]

Once the product specifications have been fixed, some decisions need to be made regarding the reaction path. There are sometimes different paths to the same product. For example, suppose ethanol is to be manufactured. Ethylene could be used as a raw material and reacted with water to produce ethanol. An alternative would be to start with methanol as a raw material and react it with synthesis gas (a mixture of carbon monoxide and hydrogen) to produce the same product. These two paths employ chemical reactor technology. A third path could employ a biochemical reaction (or fermentation) that exploits the metabolic processes of microorganisms in a biochemical reactor. Ethanol could therefore also be manufactured by fermentation of a carbohydrate. [Pg.77]

The bread and butter tools of the practicing chemical engineer are the material balance and the energy balance. In many respects chemical reactor design can be regarded as a straightforward application of these fundamental principles. This section indicates in general terms how these principles are applied to the various types of idealized reactor models. [Pg.252]

Material and Energy Balances in the Design of Industrial Reactors. The analysis of chemical reactors in terms of material and energy balances differs from the analysis of other process equipment in that one must take into account the rate at which molecular species are converted from one chemical form to another and the rate at which energy is transformed by the process. When combined with material and... [Pg.252]

One feature that distinguishes the education of the chemical engineer from that of other engineers is an exposure to the basic concepts of chemical reaction kinetics and chemical reactor design. This textbook provides a judicious introductory level overview of these subjects. Emphasis is placed on the aspects of chemical kinetics and material and energy balances that form the foundation for the practice of reactor design. [Pg.598]

The material on catalysis and heterogeneous reactions in Chapters 6, 1%, and 13 is a useful framework for an intermediate level graduate course in catalysis and chemical reactor design. In the latter course emphasis is placed on developing the student s ability to analyze critically actual kinetic data obtained from the literature in order to acquaint him with many of the traps into which the unwary may fall. Some of the problems in Chapter 12 and the illustrative case studies in Chapter 1 3 have evolved from this course. [Pg.599]

A batch chemical reactor contains 10,000 kg of reacting liquid material. A relief device must be properly sized for a potential runaway reaction. [Pg.424]

On April 8,1998, at 20 18, an explosion and fire occurred during the production of Automate Yellow 96 Dye at Morton International, Inc. Yellow 96 dye was produced by mixing and reacting two chemicals, ortho-nitrochlorobenzene (o-NCB) and 2-ethylhexylamine (2-EHA). The explosion and fire were the consequence of a runaway reaction, which overpressurized a 2000-gal capacity chemical reactor vessel and released flammable material that ignited. Nine employees were injured, including two seriously, and potentially hazardous materials were released into... [Pg.5]

Two limiting modes of operating chemical reactors employ (a) a vessel so well stirred that the composition and temperature are the same throughout (b) a vessel typified by a tube without mixing in which all molecules have the same residence time, and in which gradients of composition and temperature exist. Material and heat balances on these devices utilize the conservation law,... [Pg.49]

The information flow diagram for a non-isothermal, continuous-flow reactor (in Fig. 1.18, shown previously in Section 1.2.5) illustrates the close interlinking and highly interactive nature of the total material balance, component material balance, energy balance, rate equation, Arrhenius equation and flow effects F. This close interrelationship often brings about highly complex dynamic behaviour in chemical reactors. [Pg.96]


See other pages where Material chemical reactors is mentioned: [Pg.131]    [Pg.544]    [Pg.1837]    [Pg.1875]    [Pg.7]    [Pg.196]    [Pg.219]    [Pg.483]    [Pg.50]    [Pg.84]    [Pg.554]    [Pg.27]    [Pg.67]    [Pg.1]    [Pg.54]    [Pg.268]    [Pg.112]    [Pg.254]    [Pg.598]    [Pg.29]    [Pg.313]    [Pg.234]    [Pg.4]    [Pg.681]    [Pg.284]    [Pg.117]    [Pg.120]   
See also in sourсe #XX -- [ Pg.180 ]




SEARCH



Chemical reactors

Reactor material [

Reactors chemical reactor

© 2024 chempedia.info