Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material balances, separation processes

A flow sheet of the basic TVA process for granular diammonium phosphate is given in Figure 12. The raw materials are wet-process phosphoric acid and anhydrous ammonia. Feed acid concentration of at least 40% P2 5 required to give a satisfactory water balance. This average concentration usually is provided by two separate feed streams, one of 54% P2 5 concentration and one of about 30% P2 5 arrangement shown, the 54% acid is... [Pg.227]

The entrainer recovery column takes the distillate stream, from the azeo-column and separates it into a bottoms stream of pure water, and a ternary distillate stream for recycle to column 2. The overall material balance line for column 3 is shown in Figure 19b. This sequence was one of two original continuous processes disclosed in 1915 (106). More recendy, it has been appHed to other azeotropic separations (38,107,108). [Pg.196]

To isolate a system for study, the system is separated from the surroundings by a boundary or envelope that may either be real (e.g., a reactor vessel) or imaginary. Mass crossing the boundaiy and entering the system is part of the mass-in term. The equation may be used for any compound whose quantity does not change by chemical reaction or for any chemical element, regardless of whether it has participated in a chemical reaction. Furthermore, it may be written for one piece of equipment, several pieces of equipment, or around an entire process (i.e., a total material balance). [Pg.2168]

In establishing specifications, the first important items to identify from the plant process material balance are normal, maximum, and minimum intake or suction flow rates together with corresponding conditions of temperature and pressure. The required discharge pressure must be established. If it is necessary or important to be able to operate at reduced or over-normal flow rates, these should be identified for the manufacturer, together with the length of time of such expected condition e.g., full time at one-half rate, 20 minutes out of every hour at 10% over normal, etc. These operating requirements may separate the types of equipment. Because it is uneconomical to purchase horsepower that cannot be used by the fluid system, ask that the manufacturer state the maximum load and/or conditions that will fully load the available horsepower of the compressor-driver unit. [Pg.370]

It is often possible to make a material balance round a unit independently of the heat balance. The process temperatures may be set by other process considerations, and the energy balance can then be made separately to determine the energy requirements to maintain the specified temperatures. For other processes the energy input will determine the process stream flows and compositions, and the two balances must be made simultaneously for instance, in flash distillation or partial condensation see also Example 4.1. [Pg.144]

These four equations are the so-called MESH equations for the stage Material balance, Equilibrium, Summation and Heat (energy) balance, equations. MESH equations can be written for each stage, and for the reboiler and condenser. The solution of this set of equations forms the basis of the rigorous methods that have been developed for the analysis for staged separation processes. [Pg.498]

Consider a simple process in which a multicomponent feed is allowed to separate into a vapor and a liquid phase with the phases coming to equilibrium, as shown in Figure 4.2. An overall material balance and component material balances can be written as ... [Pg.64]

By-product silver chloride from the SILVER II process is separated as sludge, decontaminated to a 5X level, and shipped off-site, where it is reduced to silver metal, and returned to the plant for making fresh silver nitrate for the process. Based on material balances provided in the EDP, AEA expects no excess concentrated nitric acid to be produced since it will all be returned to the SILVER II processes as makeup acid or used in making fresh silver nitrate (AEA, 2001a). [Pg.65]

A mixture containing 12 mol % water is to be separated by distillation into products with 99.5 and 0.5 mol % butanol. The accompanying flowsketch of a suitable process utilizes two columns with condensing-subcooling to 40°C. The 53% saturated solution is refluxed to the first column, and the 98% is fed to the second column. The overhead of the second column contains a small amount of butanol that is recycled to the condenser for recovery. The recycle material balance is shown with the sketch. [Pg.388]

Calculations of the relations between the input and output amounts and compositions and the number of extraction stages are based on material balances and equilibrium relations. Knowledge of efficiencies and capacities of the equipment then is applied to find its actual size and configuration. Since extraction processes usually are performed under adiabatic and isothermal conditions, in this respect the design problem is simpler than for thermal separations where enthalpy balances also are involved. On the other hand, the design is complicated by the fact that extraction is feasible only of nonideal liquid mixtures. Consequently, the activity coefficient behaviors of two liquid phases must be taken into account or direct equilibrium data must be available. [Pg.459]

We study the separation of 77-hexane-ethyl acetate mixture by using acetonitrile as a heavy heterogeneous entrainer. The simulation of the process is performed with the batch process simulator ProSimBatch [10]. It enables to evaluate operational parameters like the entrainer amount that are not provided by the feasibility and synthesis analysis The column model consists of usual plate by plate Material balance, Equilibrium, Summation of fractions and Heat balance... [Pg.134]

The solution to a multi-component, multi-phase, multi-stage separation problem is found in the simultaneous or iterative solution of the material balances, the energy balance and the phase equilibrium equations (see Chapter 1). This implies that a sufficient number of design variables are specified so that the number of remaining unknown variables exactly equals the number of independent equations. When this is done, a separation process is said to be specified. [Pg.151]

The above constraints can be fulfilled only by building up an appropriate structure of recycles. At the industrial level this implies the integration of design and control of the units implied in the plantwide material balance. Hence, we may speak about the reactor/separation/recyde (RSR) as the major architectural structure defining a chemical process. [Pg.42]


See other pages where Material balances, separation processes is mentioned: [Pg.157]    [Pg.110]    [Pg.446]    [Pg.451]    [Pg.188]    [Pg.1722]    [Pg.2552]    [Pg.2554]    [Pg.362]    [Pg.378]    [Pg.420]    [Pg.609]    [Pg.172]    [Pg.142]    [Pg.502]    [Pg.277]    [Pg.204]    [Pg.419]    [Pg.117]    [Pg.25]    [Pg.236]    [Pg.446]    [Pg.451]    [Pg.4]    [Pg.19]    [Pg.408]    [Pg.192]    [Pg.344]    [Pg.15]    [Pg.342]    [Pg.220]    [Pg.322]    [Pg.82]    [Pg.4]    [Pg.14]    [Pg.41]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Balanced process

Material balance

Material balancing

Materials processing

Materials separators

Process material

Processing separation

Separation materials

Separation processes

© 2024 chempedia.info