Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transport types

Energy accompanying mass transport Type of energy Internal Kinetic Potential Mass... [Pg.419]

As also noted in the preceding chapter, it is customary to divide adsorption into two broad classes, namely, physical adsorption and chemisorption. Physical adsorption equilibrium is very rapid in attainment (except when limited by mass transport rates in the gas phase or within a porous adsorbent) and is reversible, the adsorbate being removable without change by lowering the pressure (there may be hysteresis in the case of a porous solid). It is supposed that this type of adsorption occurs as a result of the same type of relatively nonspecific intermolecular forces that are responsible for the condensation of a vapor to a liquid, and in physical adsorption the heat of adsorption should be in the range of heats of condensation. Physical adsorption is usually important only for gases below their critical temperature, that is, for vapors. [Pg.599]

A number of different types of experiment can be designed, in which disc and ring can either be swept to investigate the potential region at which the electron transfer reactions occur, or held at constant potential (under mass-transport control), depending on the infomiation sought. [Pg.1937]

The flow along the membranes also improves the mass transport there, and the separators between the membranes are constmcted to provide good flow distribution and mixing on the membrane surfaces. Membrane sizes are often about 0.5 x 1 m, spaced about 1 mm apart. Many types of polymers are used to manufacture these ion-exchange-selective membranes, which are often reiaforced by strong fabrics made of other polymers or glass fibers. [Pg.251]

Various types of detector tubes have been devised. The NIOSH standard number S-311 employs a tube filled with 420—840 p.m (20/40 mesh) activated charcoal. A known volume of air is passed through the tube by either a handheld or vacuum pump. Carbon disulfide is used as the desorbing solvent and the solution is then analyzed by gc using a flame-ionization detector (88). Other adsorbents such as siUca gel and desorbents such as acetone have been employed. Passive (diffuse samplers) have also been developed. Passive samplers are useful for determining the time-weighted average (TWA) concentration of benzene vapor (89). Passive dosimeters allow permeation or diffusion-controlled mass transport across a membrane or adsorbent bed, ie, activated charcoal. The activated charcoal is removed, extracted with solvent, and analyzed by gc. Passive dosimeters with instant readout capabiUty have also been devised (85). [Pg.46]

Many of the electrochemical techniques described in this book fulfill all of these criteria. By using an external potential to drive a charge transfer process (electron or ion transfer), mass transport (typically by diffusion) is well-defined and calculable, and the current provides a direct measurement of the interfacial reaction rate [8]. However, there is a whole class of spontaneous reactions, which do not involve net interfacial charge transfer, where these criteria are more difficult to implement. For this type of process, hydro-dynamic techniques become important, where mass transport is controlled by convection as well as diffusion. [Pg.333]

Various transport type interfaces, such as SFC-MB-MS and SFC-PB-MS, have been developed. The particle-beam interface eliminates most of the mobile phase using a two-stage momentum separator with the moving-belt interface, the column effluent is deposited on a belt, which is heated to evaporate the mobile phase. These interfaces allow the chromatograph and the mass spectrometer to operate independently. By depositing the analyte on a belt, the flow-rate and composition of the mobile phase can be altered without regard to a deterioration in the system s performance within practical limits. Both El and Cl spectra can be obtained. Moving-belt SFE-SFC-MS" has been described. [Pg.480]

An alternative to the stirred tank system is a column-type device which provides for constant fluid flow through a powder bed. The mass transport process was shown to be primarily determined by the length and cross-sectional area of the cylinder and the fluid flow rate [36],... [Pg.115]

Column-type cell (free boundary method) Mass transport studies from finely divided drug powders 36... [Pg.121]

Limiting-current phenomena may also result from a slow step in the reaction mechanism at the surface of the electrode (V4, p. 233 ff). Electrode reactions of this type are not suitable for mass-transport studies. [Pg.214]

Lla. Landau. U., LBL-2702 Ph.D. thesis. University of California, Berkeley, January 1976. Lib. Landau, U., and Tobias, C. W., Mass Transport and Current Distribution in Channel Type Electrolyzers in the Laminar and Turbulent Flow Regimes, Ext. Abstr., No. 266, Electrochemical Society Meeting, Washington D.C., May 1976, 663. [Pg.314]

Bulk or forced flow of the Hagan-Poiseuille type does not in general contribute significantly to the mass transport process in porous catalysts. For fast reactions where there is a change in the number of moles on reaction, significant pressure differentials can arise between the interior and the exterior of the catalyst pellets. This phenomenon occurs because there is insufficient driving force for effective mass transfer by forced flow. Molecular diffusion occurs much more rapidly than forced flow in most porous catalysts. [Pg.435]

Having defined our near electrode region, we turn now to consider the various techniques that can be employed in the in situ investigation of the reactions that occur within it. The various methods that can be employed will each provide different types of information on the processes occurring there. As has already been discussed, cyclic voltammetry is the most common technique first employed in the investigation of a new electrochemical system. However, in contrast to the LSV and CV of adsorbed species, the voltammetry of electroactivc species in solution is complicated by the presence of an additional factor in the rate, the mass transport of species to the electrode. Thus, it may be more useful to consider first the conceptually more simple chronoamperometry and chronocoulometry techniques, in order to gain an initial picture of the role of mass transport. [Pg.173]

The UMEs used in bioarrays can be divided into three types disk, ring, and strip electrodes. The theory of the disk, ring, and strip UMEs has been extensively studied [97-100], Due to the edge effect, the profile of the mass diffusion to the ultramicroelectrode surface is three dimensional, and can significantly enhance the mass transportation in comparison to the conventional large electrode with one-dimensional mass transportation. The steady-state measurement at a planar UME can be expressed as... [Pg.371]

There are three types of mass transport processes within a microfluidic system convection, diffusion, and immigration. Much more common are mixtures of three types of mass transport. It is essential to design a well-controlled transport scheme for the microsystem. Convection can be generated by different forces, such as capillary effect, thermal difference, gravity, a pressurized air bladder, the centripetal forces in a spinning disk, mechanical and electroosmotic pumps, in the microsystem. The mechanical and electroosmotic pumps are often used for transport in a microfluidic system due to their convenience, and will be further discussed in section 11.5.2. The migration is a direct transport of molecules in response to an electric field. In most cases, the moving... [Pg.386]

The metal ion in electroless solutions may be significantly complexed as discussed earlier. Not all of the metal ion species in solution will be active for electroless deposition, possibly only the uncomplexed, or aquo-ions hexaquo in the case of Ni2+, and perhaps the ML or M2L2 type complexes. Hence, the concentration of active metal ions may be much less than the overall concentration of metal ions. This raises the possibility that diffusion of metal ions active for the reduction reaction could be a significant factor in the electroless reaction in cases where the patterned elements undergoing deposition are smaller than the linear, or planar, diffusion layer thickness of these ions. In such instances, due to nonlinear diffusion, there is more efficient mass transport of metal ion to the smaller features than to large area (relative to the diffusion layer thickness) features. Thus, neglecting for the moment the opposite effects of additives and dissolved 02, the deposit thickness will tend to be greater on the smaller features, and deposit composition may be nonuniform in the case of alloy deposition. [Pg.262]

The same types of catalyst have been employed in 1-octene hydroformylation, but with the substrates and products being transported to and from the reaction zone dissolved in a supercritical fluid (carbon dioxide) [9], The activity of the catalyst is increased compared with liquid phase operation, probably because of the better mass transport properties of scC02 than of the liquid. This type of approach may well reduce heavies formation because of the low concentration of aldehyde in the system, but the heavies that do form are likely to be insoluble in scC02, so may precipitate on and foul the catalyst. The main problem with this process, however, is likely to be the use of high pressure, which is common to all processes where supercritical fluids are used (see Section 9.8). [Pg.241]

In the next chapter (Chapter 27) we show calculations of this type can be integrated into mass transport models to produce models of weathering in soils and sediments open to groundwater flow. In later chapters, we consider redox kinetics in geochemical systems in which a mineral surface or enzyme acts as a catalyst (Chapter 28), and those in which the reactions are catalyzed by microbial populations (Chapter 33). [Pg.387]

Remarkably, the use of a fluorous biphasic solvent system in combination with a [Rh(NBD)(DPPE)]+-type catalyst (NBD = norbornadiene) copolymerized into a porous nonfluorous ethylene dimethacrylate polymer, resulted in an increased activity of the catalyst relative to a situation when only toluene was used as solvent [30]. The results were explained by assuming that fluorophobicity of the substrate (methyl-trans-cinnamate) leads to a relatively higher local substrate concentration inside the cavities of the polymer when the fluorous solvent is used. That is, the polymer could be viewed as a better solvent than the fluorous solvent system. This interpretation was supported by the observations that (i) the increase in activity correlates linearly with the volume fraction of fluorous solvent (PFMCH) and (ii) the porous ethylene dimethacrylate polymer by itself lowers the concentration of decane in PFMCH from 75 mM to 50 mM, corresponding to a 600 mM local concentration of decane in the polymer. Gas to liquid mass transport limitation of dihydrogen could be mled out as a possible cause. [Pg.1384]


See other pages where Mass transport types is mentioned: [Pg.581]    [Pg.368]    [Pg.537]    [Pg.90]    [Pg.53]    [Pg.428]    [Pg.360]    [Pg.4]    [Pg.49]    [Pg.162]    [Pg.229]    [Pg.468]    [Pg.59]    [Pg.354]    [Pg.6]    [Pg.467]    [Pg.335]    [Pg.707]    [Pg.708]    [Pg.523]    [Pg.364]    [Pg.198]    [Pg.113]    [Pg.4]    [Pg.41]    [Pg.187]    [Pg.81]    [Pg.120]    [Pg.243]   


SEARCH



Mass transport

Mass transport, carrier structure types

Mass type

© 2024 chempedia.info