Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer solubility

From the above qualitative discussion it can be clearly derived that at least four important factors, namely interphase mass transfer, solubility, thermodynamic phase equilibria, and intrinsic kinetics must be considered during quntitative analysis of gas-liquid-liquid reactions (Figure 3). [Pg.208]

The first assumption in all such physical mass transfer processes is that equiHbrium exists at the interface between the two phases. This assumption implies that, at the interface, the concentration of the gas in the Hquid, is equal to its solubiHty at its partial pressure in the gas phase,Since, for sparingly soluble gases such as oxygen, there is a direct proportionaHty between the two,... [Pg.332]

Manufacture and Processing. Mononitrotoluenes are produced by the nitration of toluene in a manner similar to that described for nitrobenzene. The presence of the methyl group on the aromatic ring faciUtates the nitration of toluene, as compared to that of benzene, and increases the ease of oxidation which results in undesirable by-products. Thus the nitration of toluene generally is carried out at lower temperatures than the nitration of benzene to minimize oxidative side reactions. Because toluene nitrates at a faster rate than benzene, the milder conditions also reduce the formation of dinitrotoluenes. Toluene is less soluble than benzene in the acid phase, thus vigorous agitation of the reaction mixture is necessary to maximize the interfacial area of the two phases and the mass transfer of the reactants. The rate of a typical industrial nitration can be modeled in terms of a fast reaction taking place in a zone in the aqueous phase adjacent to the interface where the reaction is diffusion controlled. [Pg.70]

Sedimentation is also used for other purposes. For example, relative motion of particles and Hquid iacreases the mass-transfer coefficient. This motion is particularly useful ia solvent extraction ia immiscible Hquid—Hquid systems (see Extraction, liquid-liquid). An important commercial use of sedimentation is ia continuous countercurrent washing, where a series of continuous thickeners is used ia a countercurrent mode ia conjunction with reslurrying to remove mother liquor or to wash soluble substances from the soHds. Most appHcations of sedimentation are, however, ia straight sohd—Hquid separation. [Pg.316]

Ozone is only slightly soluble in water. Thus, factors that affect the mass transfer between the gas and Hquid phases are important and include temperature, pressure, contact time, contact surface area (bubble size), and pH. [Pg.163]

Principles of Rigorous Absorber Design Danckwerts and Alper [Trans. Tn.st. Chem. Eng., 53, 34 (1975)] have shown that when adequate data are available for the Idnetic-reaciion-rate coefficients, the mass-transfer coefficients fcc and /c , the effective interfacial area per unit volume a, the physical solubility or Henry s-law constants, and the effective diffusivities of the various reactants, then the design of a packed tower can be calculated from first principles with considerable precision. [Pg.1366]

This form is partieularly appropriate when the gas is of low solubility in the liquid and "liquid film resistanee" eontrols the rate of transfer. More eomplex forms whieh use an overall mass transfer eoeffieient whieh ineludes the effeets of gas film resistanee must be used otherwise. Also, if ehemieal reaetions are involved, they are not rate limiting. The approaeh given here, however, illustrates the required ealeulation steps. The nature of the mixing or agitation primarily affeets the interfaeial area per unit volume, a. The liquid phase mass transfer eoeffieient, kL, is primarily a funetion of the physieal properties of the fluid. The interfaeial area is determined by the size of the gas bubbles formed and how long they remain in the mixing vessel. The size of the bubbles is normally expressed in terms of their Sauter mean diameter, dj, whieh is defined below. How long the bubbles remain is expressed in terms of gas hold-up, H, the fraetion of the total fluid volume (gas plus liquid) whieh is oeeupied by gas bubbles. [Pg.472]

Oxygen transfer rate (OTR) The product of volumetric oxygen transfer rate kj a and the oxygen concentration driving force (C - Cl), (ML T ), where Tl is the mass transfer coefficient based on liquid phase resistance to mass transfer (LT ), a is the air bubble surface area per unit volume (L ), and C and Cl are oxygen solubility and dissolved oxygen concentration, respectively. All the terms of OTR refer to the time average values of a dynamic situation. [Pg.905]

Sada, E., Kumazawa, H., Lee, C. and Fujiwara, N., 1985. Gas-liquid mass transfer characteristics in a bubble column with suspended sparingly soluble fine particles. Industrial and Engineering Chemistry Process Design and Development, 24, 255-261. [Pg.321]

The simplest method to measure gas solubilities is what we will call the stoichiometric technique. It can be done either at constant pressure or with a constant volume of gas. For the constant pressure technique, a given mass of IL is brought into contact with the gas at a fixed pressure. The liquid is stirred vigorously to enhance mass transfer and to allow approach to equilibrium. The total volume of gas delivered to the system (minus the vapor space) is used to determine the solubility. If the experiments are performed at pressures sufficiently high that the ideal gas law does not apply, then accurate equations of state can be employed to convert the volume of gas into moles. For the constant volume technique, a loiown volume of gas is brought into contact with the stirred ionic liquid sample. Once equilibrium is reached, the pressure is noted, and the solubility is determined as before. The effect of temperature (and thus enthalpies and entropies) can be determined by repetition of the experiment at multiple temperatures. [Pg.84]

The transfer process is termed gas film controlling if essentieilly all of the resistance to mass transfer is in the gas film. This means that the gas is usually quite soluble in, or reactive with, the liquid of the system. If the system is liq-... [Pg.344]

Bignold has postulated that increasing flow increases both mass transfer and by lowering the free corrosion potential the oxide solubility. This would lead to a higher dependency on mass transfer than expected. [Pg.297]

Mass transfer This phenomenon manifests itself as the physical transport of a metal from one portion of the system to another, and may occur when there is an alloy compositional difference or a temperature gradient between parts of the unit joined by the flowing liquid phase. An exceedingly small solubility of the metal component or corrosion product in the molten metal or salt appears sufficient to permit mass transfer to proceed at a fairly rapid pace. [Pg.1059]

In general, it is fair to state that one of the major difficulties in interpreting, and consequently in establishing definitive tests of, corrosion phenomena in fused metal or salt environments is the large influence of very small, and therefore not easily controlled, variations in solubility, impurity concentration, temperature gradient, etc. . For example, the solubility of iron in liquid mercury is of the order of 5 x 10 at 649°C, and static tests show iron and steel to be practically unaltered by exposure to mercury. Nevertheless, in mercury boiler service, severe operating difficulties were encountered owing to the mass transfer of iron from the hot to the cold portions of the unit. Another minute variation was found substantially to alleviate the problem the presence of 10 ppm of titanium in the mercury reduced the rate of attack to an inappreciable value at 650°C as little as 1 ppm of titanium was similarly effective at 454°C . [Pg.1059]

A strain of Azotobacter vinelandii was cultured in a 15 m3 stirred fermenter for the production of alginate. Under current conditions the mass transfer coefficient, kLa, is 0.18 s. Oxygen solubility in the fermentation broth is approximately 8 X 10 3 kgm-3.9 The specific oxygen uptake rate is 12.5 mmol g 1 h. What is the maximum cell density in the broth If copper sulphate is accidentally added to the fermentation broth, which may reduce the oxygen uptake rate to 3 mmol g 1 h 1 and inhibit the microbial cell growth, what would be the maximum cell density in this condition ... [Pg.20]


See other pages where Mass transfer solubility is mentioned: [Pg.966]    [Pg.966]    [Pg.37]    [Pg.332]    [Pg.386]    [Pg.501]    [Pg.532]    [Pg.244]    [Pg.1425]    [Pg.2138]    [Pg.373]    [Pg.101]    [Pg.252]    [Pg.253]    [Pg.263]    [Pg.319]    [Pg.423]    [Pg.905]    [Pg.77]    [Pg.130]    [Pg.236]    [Pg.351]    [Pg.175]    [Pg.181]    [Pg.82]    [Pg.89]    [Pg.90]    [Pg.90]    [Pg.261]    [Pg.288]    [Pg.270]    [Pg.429]    [Pg.440]    [Pg.114]    [Pg.24]    [Pg.34]   
See also in sourсe #XX -- [ Pg.785 , Pg.786 ]




SEARCH



Solubility and Mass-Transfer Factors

Soluble release mass-transfer

Soluble release mass-transfer coefficient

© 2024 chempedia.info