Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer acts with reactions

The absorption of ozone by cyanide solutions in stirred reactors is complicated by mass transfer considerations. The presence of ozone gas in the exhaust from such a reactor does not indicate that equilibrium has been obtained between ozone gas bubbles and ozone in solution, but rather that the mass transfer through the individual bubbles is not complete, because of the resistance on the gas side. In other words, mass transfer controls the reaction, as the ozone will react almost instantaneously with the cyanide ion in solution. The presence of some metals, particularly copper, appears to speed up the absorption by acting as oxygen carriers. A solution of ozone in dilute acid decomposes somewhat more quickly when a trace of cupric ion is added. The presence of these metal catalysts, if this be their function, does not appear to be a necessary condition to ozone oxidation. What is important is that adequate mass transfer time and surface be available, as would be found in a countercurrent packed tower. [Pg.71]

This expression of the global operation time could have been predicted since the homogeneous reaction acts in parallel with the serial combination of mass transfer and heterogeneous reaction. [Pg.1038]

The compound R X is a chain-transfer agent, with X usually H or Cl. The net effect of chain transfer is to kill a growing chain and start a new one in its place, thus shortening the chains. Mercaptan chain-transfer agents ate often used to limit molecular weight, but under appropriate conditions, almost anything in the reaction mass (solvent, dead polymer, initiator) can act as a chain-transfer agent to a certain extent. [Pg.436]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

In a number of these processes, a liquid heat- and mass-transfer medium is in direct contact with the catalyst and the reaction mixture. The main function of the liquid is to act as a heat sink and as a medium for convective heat transfer. However, since the liquid may be assumed to cover the solid particles and in this way act as a barrier between the gaseous and the solid phases, it must therefore also function as a mass-transfer medium. [Pg.77]

Also, when the wall of the stirring vessel is preferently wetted by the dispersed phase, the wall may be covered with a thin stagnant layer of dispersed phase, which may act, more or less, as a dead corner in so far as the chemical reaction is slowed down by poor mass transfer. However, there still may occur a continuous coalescing of dispersed drops with these stagnant layers and corners, while on the other hand these dead corners will continuously lose new drops, which are taken up again in the living dispersed phase. In this way the dead corners act as a medium of interaction. [Pg.275]

As mentioned above, small-scale photoreactions are quite often carried out in quartz or Pyrex tubes, by external irradiation. However, this is certainly not an optimal solution for maximizing the exploitation of the emitted radiation. Internal irradiation is obviously better from the geometric point of view, but (relatively) large-scale preparations must take into account all of these factors and achieve optimal light and mass transfer. These elements are not taken into account in exploratory studies or small-scale syntheses, just as is the case for thermal reactions, where the optimization is considered at a later stage the essential requirement is that the explorative study is carried out under conditions where occurrence of the reaction is not prevented. Thus, it is important that the source is matched with the reagent absorption, the vessel is of the correct material, and the solvent does not absorb competitively (unless it acts also as the sensitizer). Figure 1.7 and Table 1.1 may help in this choice, in conjunction with the U V spectra of all of the compounds used (it is recommended that the spectra are measured on the actual samples used, in comparison with those taken from the literature, in order to check for absorption by impurities). [Pg.11]

Besides using microreactor devices for efficient screening of biocatalysts, these can also be applied for enzymatic synthesis. Biocatalyzed reactions have recently received much attention because of the efficiency and selectivity that enzymes have to offer, combined with their ability to act under mild conditions [422,423]. Microreactors offer in this respect the advantage that enzymes can be more optimally used as a result ofthe higher mass-transfer properties of microchannels and the high surface-... [Pg.196]

The copolymerization of monomers where one of the monomers acts as the hydrophobe was reported by Reimers and Schork [26]. MMA was copolymerized with p-methylstyrene, vinyl hexanoate, or vinyl 2-ethylhexanoate. The resulting copolymer composition tended to follow the predictions of the reactivity ratios, i.e., the reaction progresses as a bulk reaction. In contrast, copolymer compositions obtained from the (macro)emulsion copolymerizations tended to be more influenced by the relative water solubility of the comonomer and mass transfer. Wu and Schork used monomer combinations with large differences in reactivity ratios and water solubility vinyl acetate/butyl acrylate,... [Pg.100]

Several thermodynamic and kinetic behaviors of enzyme-catalyzed reactions performed in ILs, with respect to enzymatic reactions carried out in conventional solvents, could lead to an improvement in the process performance [34—37]. ILs showed an over-stabilization effect on biocatalysts [38] on the basis of the double role played by these neoteric solvents ILs could provide an adequate microenvironment for the catalytic action of the enzyme (mass transfer phenomena and active catalytic conformation) and if they act as a solvent, ILs may be regarded as liquid immobilization supports, since multipoint enzyme-1L interactions (hydrogen. Van der Waals, ionic, etc.) may occur, resulting in a flexible supramolecular not able to maintain the active protein conformation [39]. Their polar and non-coordinating properties hold considerable potential for enantioselective reactions since profound effects on reactivities and selectivities are expected [40]. In recent years attention has been focused on the appUcation of ILs as reaction media for enantioselective processes [41—43]. [Pg.115]

At this time, only a small number of nanoscale processes are characterized with transport phenomena equations. Therefore, if, for example, a chemical reaction takes place in a nanoscale process, we cannot couple the elementary chemical reaction act with the classical transport phenomena equations. However, researchers have found the keys to attaching the molecular process modelling to the chemical engineering requirements. For example in the liquid-vapor equilibrium, the solid surface adsorption and the properties of very fine porous ceramics computed earlier using molecular modelling have been successfully integrated in modelling based on transport phenomena [4.14]. In the same class of limits we can include the validity limits of the transfer phenomena equations which are based on parameters of the thermodynamic state. It is known [3.15] that the flow equations and, consequently, the heat and mass transport equations, are valid only for the... [Pg.48]

One might say, a mass-transfer limitation under normal conditions acts as a gentle brake on the reaction, slowing it down at worst to the rate that mass transfer to the reacting phase can sustain, whereas in hydroformylation with cobalt hydrocarbonyl catalysts, mass transfer imposes an upper limit on the amount of catalyst the system will tolerate. Assume a small amount of catalyst is used mass transfer then has no trouble supplying as much CO as the reaction consumes (note conversion is first order in catalyst). However, if now the amount of catalyst and thereby the conversion rate are increased, the point may be reached where mass transfer can no longer keep up with CO consumption. The self-accelerating conversion then depletes the liquid of CO to the extent that the catalyst added beyond the limit of mass-transfer stability decomposes. [Pg.386]

The efficiency of a given pervaporation process must be evaluated in order to act on the overall system so as to either boost or reduce mass transfer to the acceptor chamber as required. Such evaluation can be done either in (a) relative terms by comparing signals provided under different conditions by the analyte (or its reaction product), previously collected in the upper chamber and driven to the detector, or in (b) absolute terms by comparing the signal obtained under the working conditions with that corresponding to 100% mass transfer. [Pg.134]

Entrapment methods of immobilization of bioreceptors utilized the lattice structure of particular base material. They include such methods as entrapment behind the membrane, covering the active surface of biosensors, entrapment within a self-assembled monolayers on the biosensor surface, as well as on freestanding or supported bilayer lipid membranes, and also entrapment within a polymeric matrix membranes, or within bulk material of sensor. All these mentioned methods are widely employed in design of biosensors. The essential condition of success of these methods of immobilization is preservation of sufficient mobility of substrate or products of biochemical reaction, involved in sensing mechanism, as matrix may act as a barrier to mass transfer with significant implications for... [Pg.45]


See other pages where Mass transfer acts with reactions is mentioned: [Pg.236]    [Pg.236]    [Pg.225]    [Pg.880]    [Pg.239]    [Pg.239]    [Pg.250]    [Pg.539]    [Pg.248]    [Pg.14]    [Pg.299]    [Pg.17]    [Pg.143]    [Pg.92]    [Pg.349]    [Pg.59]    [Pg.62]    [Pg.239]    [Pg.326]    [Pg.417]    [Pg.499]    [Pg.173]    [Pg.143]    [Pg.385]    [Pg.481]    [Pg.188]    [Pg.1154]    [Pg.314]    [Pg.91]    [Pg.123]    [Pg.310]    [Pg.96]    [Pg.463]    [Pg.507]    [Pg.1792]    [Pg.605]    [Pg.24]   
See also in sourсe #XX -- [ Pg.236 , Pg.242 , Pg.244 ]




SEARCH



Mass transfer reaction

Mass transfer with reaction

Transfer with Reaction

© 2024 chempedia.info