Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometer thermal

Evaporation from a spray of charged droplets produced from a stream of liquid yields ions that can be analyzed in a mass spectrometer. Thermally labile and normally nonvolatile substances such as sugars, peptides, and proteins can be examined successfully. [Pg.63]

Isotope Dilution By Spark Source Mass Spectrometry. A unique and quite different approach to determining trace elements in solids, liquids, and gases uses the isotope dilution technique. This method has been operational for some time with mass spectrometers. Thermal ionization... [Pg.84]

The analysis of stable Isotopes requires extensive sample preparation and sophisticated, expensive Instruments. In our work we use a thermal ionization mass spectrometer. Thermal ionization mass spectrometers cost approximately 300,000. In contrast, analysis of the radioisotope requires little sample preparation and analysis can be done quickly and easily using a gamma counter. [Pg.35]

A second common mode of fragmentation involves dehydration. The importance of dehydration increases as the chain length of the alcohol increases. While the fragment ion peak resulting from dehydration (m/z = 70) is very intense in the mass spectrum of 1-pentanol, it is quite weak in the other pentanol isomers. Dehydration may occur by either thermal dehydration prior to ionization or by fragmentation of the molecular ion. Thermal dehydration is especially troublesome for alcohol samples analyzed by GC-MS. The injection port of the gas chromatograph is usually maintained at more than 200°C, and many alcohols, especially tertiary or allylic/benzylic, will dehydrate before the sample molecules even reach the GC column and certainly before the molecules reach the ion source of the mass spectrometer. Thermal dehydration is a 1,2-eUmination of water. If the alcohol molecules reach the ion source intact, however, dehydration of the molecular ion can still occur, but in this case it is a 1,4-elimination of water via a cyclic mechanism ... [Pg.159]

The chromatogram can finally be used as the series of bands or zones of components or the components can be eluted successively and then detected by various means (e.g. thermal conductivity, flame ionization, electron capture detectors, or the bands can be examined chemically). If the detection is non-destructive, preparative scale chromatography can separate measurable and useful quantities of components. The final detection stage can be coupled to a mass spectrometer (GCMS) and to a computer for final identification. [Pg.97]

The mix of ions, formed essentially at or near ambient temperatures, is passed through a nozzle (or skimmer) into the mass spectrometer for mass analysis. Since the ions are formed in the vapor phase without having undergone significant heating, many thermally labile and normally nonvolatile substances can be examined in this way. [Pg.62]

Apart from ES and APCI being excellent ion sources/inlet systems for polar, thermally unstable, high-molecular-mass substances eluting from an LC or a CE column, they can also be used for stand-alone solutions of substances of high to low molecular mass. In these cases, a solution of the sample substance is placed in a short length of capillary tubing and is then sprayed from there into the mass spectrometer. [Pg.284]

Accurate, precise isotope ratio measurements are important in a wide variety of applications, including dating, examination of environmental samples, and studies on drug metabolism. The degree of accuracy and precision required necessitates the use of special isotope mass spectrometers, which mostly use thermal ionization or inductively coupled plasma ionization, often together with multiple ion collectors. [Pg.369]

With such mass spectrometers, plasma torches and thermal ionization are the most widely used means for ionizing samples for ratio measurements. [Pg.425]

The special problems for vaUdation presented by chiral separations can be even more burdensome for gc because most methods of detection (eg, flame ionization detection or electron capture detection) in gc destroy the sample. Even when nondestmctive detection (eg, thermal conductivity) is used, individual peak collection is generally more difficult than in Ic or tic. Thus, off-line chiroptical analysis is not usually an option. Eortunately, gc can be readily coupled to a mass spectrometer and is routinely used to vaUdate a chiral separation. [Pg.71]

Many physical principles can be employed by different sensor vendors to obtain the same measurement. For example, in 1995, 49 vendors were listed for hydrogen sensing (2). Represented among the sensor systems are mass spectrometers, gas chromatographs, electrochemical cells, thermal... [Pg.389]

Simultaneous Differential Thermal-Mass Spectrometer Analysis of Nitrate Salts of Mono-methylhydrazine and Methylamine , SAMSO TR-70-117(1970) 54) Anon, Propellants,... [Pg.303]

The quadrupole mass spectrometer has been found to be particularly suitable for EGA in thermal analysis. Published reports include descriptions of the various systems used [153—155] and applications in studies of the pyrolysis of polymers [155], minerals [156] and many inorganic solids [157—159]. [Pg.22]

Figure 2.2. Thermal desorption spectra of carbon monoxide, measured mass spectrometically at mass 28 (atomic units, a.u.), on a platinum (100) surface upon which potassium has been pre-adsorbed to a surface coverage of 0K.7 Reprinted with permission from Elsevier Science. Figure 2.2. Thermal desorption spectra of carbon monoxide, measured mass spectrometically at mass 28 (atomic units, a.u.), on a platinum (100) surface upon which potassium has been pre-adsorbed to a surface coverage of 0K.7 Reprinted with permission from Elsevier Science.
The combination of chromatography and mass spectrometry (MS) is a subject that has attracted much interest over the last forty years or so. The combination of gas chromatography (GC) with mass spectrometry (GC-MS) was first reported in 1958 and made available commercially in 1967. Since then, it has become increasingly utilized and is probably the most widely used hyphenated or tandem technique, as such combinations are often known. The acceptance of GC-MS as a routine technique has in no small part been due to the fact that interfaces have been available for both packed and capillary columns which allow the vast majority of compounds amenable to separation by gas chromatography to be transferred efficiently to the mass spectrometer. Compounds amenable to analysis by GC need to be both volatile, at the temperatures used to achieve separation, and thermally stable, i.e. the same requirements needed to produce mass spectra from an analyte using either electron (El) or chemical ionization (Cl) (see Chapter 3). In simple terms, therefore, virtually all compounds that pass through a GC column can be ionized and the full analytical capabilities of the mass spectrometer utilized. [Pg.19]

Problems may be encountered in the analysis of thermally labile compounds, as heat is required for mobile-phase removal and for the transfer of analyte from the belt into the source of the mass spectrometer, and highly involatile compounds which cannot be desorbed from the belt, unless FAB is used for ionization. [Pg.139]

From a practical point of view, the DLI, unlike the moving-belt interface, contains no moving parts and is therefore more reliable in operation if adequate precautions are taken to minimize the frequency of the pinhole blocking. In addition, it does not require heat either to remove the mobile phase or to vaporize the analyte into the source of the mass spectrometer. The DLI is, consequently, better for the analysis of thermally labile materials. [Pg.142]

The particles then enter a conventional mass spectrometer source where they are vaporized prior to being ionized using electron impact or chemical ionization. As with other interfaces, this may cause problems during the analysis of thermally labile and highly in volatile compounds. [Pg.149]

In APCI, droplets are generated by a combination of heat and a nebulizing gas. While the analytes are embedded in a droplet, and thus protected to some extent from the heat, many thermally labile materials are decomposed. In addition, ionization occurs mainly by ion-molecule reactions and yields predominantly singly charged ions. If, therefore, compounds do not undergo thermal degradation, a mass spectrometer with extended mass range would be required to detect any ions formed. [Pg.297]

The instrumentation for temperature-programmed investigations is relatively simple. The reactor, charged with catalyst, is controlled by a processor, which heats the reactor at a linear rate of typically 0.1 to 20 °C min . A thermal conductivity detector or, preferably, a mass spectrometer measures the composition of the outlet gas. [Pg.154]

Reliable analytical methods are available for determination of many volatile nitrosamines at concentrations of 0.1 to 10 ppb in a variety of environmental and biological samples. Most methods employ distillation, extraction, an optional cleanup step, concentration, and final separation by gas chromatography (GC). Use of the highly specific Thermal Energy Analyzer (TEA) as a GC detector affords simplification of sample handling and cleanup without sacrifice of selectivity or sensitivity. Mass spectrometry (MS) is usually employed to confirm the identity of nitrosamines. Utilization of the mass spectrometer s capability to provide quantitative data affords additional confirmatory evidence and quantitative confirmation should be a required criterion of environmental sample analysis. Artifactual formation of nitrosamines continues to be a problem, especially at low levels (0.1 to 1 ppb), and precautions must be taken, such as addition of sulfamic acid or other nitrosation inhibitors. The efficacy of measures for prevention of artifactual nitrosamine formation should be evaluated in each type of sample examined. [Pg.331]

Positive ion FAB mass spectra obtained with a double focusing mass spectrometer produced abundant molecular ions ([M] +) of carotenes and xanthophyUs with minimal fragmentation and no detectable thermal decomposition. Fragmentation of the precursor ion was enhanced by collision-induced dissociation (CID) using helium gas. ... [Pg.468]


See other pages where Mass spectrometer thermal is mentioned: [Pg.306]    [Pg.466]    [Pg.306]    [Pg.466]    [Pg.577]    [Pg.585]    [Pg.60]    [Pg.60]    [Pg.61]    [Pg.73]    [Pg.105]    [Pg.276]    [Pg.283]    [Pg.283]    [Pg.353]    [Pg.546]    [Pg.142]    [Pg.179]    [Pg.35]    [Pg.345]    [Pg.6]    [Pg.86]    [Pg.107]    [Pg.114]    [Pg.117]    [Pg.216]    [Pg.328]    [Pg.126]    [Pg.746]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Loading sample strontium solution on a filament for measurement in the thermal ionization mass spectrometer (TIMS)

Thermal Ionization Mass Spectrometers (TIMS)

Thermal ionization mass spectrometer

© 2024 chempedia.info