Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometer tandem analyzer

ToF mass spectrometers as dynamic instruments gained popularity with the introduction of matrix assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) as effective pulsed ion sources for the soft ionization of large biomolecules (up to 10s dalton) due to their high ion transmission.38 ToF mass spectrometers, quadrupole analyzers and/or magnetic sector fields can be combined in tandem mass spectrometers (MS/MS) for the analysis of organic compounds. [Pg.133]

Figure 6.8 MS/MS experiments based on analysis using two spatially separate mass analyzers or tandem mass spectrometers ( tandem in space ). A collision cell is set between two mass analyzers. (Reproduced from de Hoffmann with permission from John Wiley and Sons copyright 1996.)... Figure 6.8 MS/MS experiments based on analysis using two spatially separate mass analyzers or tandem mass spectrometers ( tandem in space ). A collision cell is set between two mass analyzers. (Reproduced from de Hoffmann with permission from John Wiley and Sons copyright 1996.)...
An AutoSpec-TOF mass spectrometer has a magnetic sector and an electron multiplier ion detector for carrying out one type of mass spectrometry plus a TOF analyzer with a microchannel plate multipoint ion collector for another type of mass spectrometry. Either analyzer can be used separately, or the two can be run in tandem (Figure 20.4). [Pg.154]

Tandem mass spectrometers most commonly used for MS/MS smdies include the following analyzer combinations, although many others are possible ... [Pg.289]

Tandem mass spectrometry (MS/MS) is a method for obtaining sequence and structural information by measurement of the mass-to-charge ratios of ionized molecules before and after dissociation reactions within a mass spectrometer which consists essentially of two mass spectrometers in tandem. In the first step, precursor ions are selected for further fragmentation by energy impact and interaction with a collision gas. The generated product ions can be analyzed by a second scan step. MS/MS measurements of peptides can be performed using electrospray or matrix-assisted laser desorption/ionization in combination with triple quadruple, ion trap, quadrupole-TOF (time-of-flight), TOF-TOF or ion cyclotron resonance MS. Tandem... [Pg.1191]

Complex peptide mixmres can now be analyzed without prior purification by tandem mass spectrometry, which employs the equivalent of two mass spectrometers linked in series. The first spectrometer separates individual peptides based upon their differences in mass. By adjusting the field strength of the first magnet, a single peptide can be directed into the second mass spectrometer, where fragments are generated and their masses determined. As the sensitivity and versatility of mass spectrometry continue to increase, it is displacing Edman sequencers for the direct analysis of protein primary strucmre. [Pg.27]

Figure 2.3. A. Mass spectrometer consisting of an ionization source, a mass analyzer and an ion detector. The mass analyzer shown is a time-of -flight (TOF) mass spectrometer. Mass-to-charge (m/z) ratios are determined hy measuring the amount of time it takes an ion to reach the detector. B. Tandem mass spectrometer consisting of an ion source, a first mass analyzer, a collision cell, a second mass analyzer and a detector. The first mass analyzer is used to choose a particular peptide ion to send to the collision cell where the peptide is fragmented. The mass of the spectrum of fragments is determined in the second mass analyzer and is diagnostic of the amino acid sequence of the peptide. Figure adapted from Yates III (2000). Figure 2.3. A. Mass spectrometer consisting of an ionization source, a mass analyzer and an ion detector. The mass analyzer shown is a time-of -flight (TOF) mass spectrometer. Mass-to-charge (m/z) ratios are determined hy measuring the amount of time it takes an ion to reach the detector. B. Tandem mass spectrometer consisting of an ion source, a first mass analyzer, a collision cell, a second mass analyzer and a detector. The first mass analyzer is used to choose a particular peptide ion to send to the collision cell where the peptide is fragmented. The mass of the spectrum of fragments is determined in the second mass analyzer and is diagnostic of the amino acid sequence of the peptide. Figure adapted from Yates III (2000).
Figure 2.5. Tandem mass spectrometry. A. A peptide mixture is electrosprayed into the mass spectrometer. Individual peptides from the mixture are isolated (circled peptide) and fragmented. B. The fragments from the peptide are mass analyzed to obtain sequence information. The fragments obtained are derived from the N or C terminus of the peptide and are designated "b" or "y" ions, respectively. The spectrum shown indicates peptides that differ in size by the amino acids shown. Figure 2.5. Tandem mass spectrometry. A. A peptide mixture is electrosprayed into the mass spectrometer. Individual peptides from the mixture are isolated (circled peptide) and fragmented. B. The fragments from the peptide are mass analyzed to obtain sequence information. The fragments obtained are derived from the N or C terminus of the peptide and are designated "b" or "y" ions, respectively. The spectrum shown indicates peptides that differ in size by the amino acids shown.
It should be pointed out that FAB, MALDI, and ESI can be used to provide ions for peptide mass maps or for microsequencing and that any kind of ion analyzer can support searches based only on molecular masses. Fragment or sequence ions are provided by instruments that can both select precursor ions and record their fragmentation. Such mass spectrometers include ion traps, Fourier transform ion cyclotron resonance, tandem quadrupole, tandem magnetic sector, several configurations of time-of-flight (TOF) analyzers, and hybrid systems such as quadrupole-TOF and ion trap-TOF analyzers. [Pg.262]

Multiple mass analyzers exist that can perform tandem mass spectrometry. Some use a tandem-in-space configuration, such as the triple quadrupole mass analyzers illustrated (Fig.3.9). Others use a tandem-in-time configuration and include instruments such as ion-traps (ITMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS or FTMS). A triple quadrupole mass spectrometer can only perform the tandem process once for an isolated precursor ion (e.g., MS/MS), but trapping or tandem-in-time instruments can perform repetitive tandem mass spectrometry (MS ), thus adding n 1 degrees of structural characterization and elucidation. When an ion-trap is combined with HPLC and photodiode array detection, the net result is a profiling tool that is a powerful tool for both metabolite profiling and metabolite identification. [Pg.47]

TOF analyzers are especially compatible with MALDI ion sources and hence are frequently coupled in aMALDI-TOF configuration. Nevertheless, many commercial mass spectrometers combine ESI with TOF with great success. For proteomics applications, the quadrupole TOF (QqTOF) hybrid instruments with their superior mass accuracy, mass range, and mass resolution are of much greater utility than simple TOF instruments.21,22 Moreover, TOF instruments feature high sensitivity because they can generate full scan data without the necessity for scanning that causes ion loss and decreased sensitivity. Linear mode TOF instruments cannot perform tandem mass spectrometry. This problem is addressed by hybrid instruments that incorporate analyzers with mass selective capability (e.g., QqTOF) in front of a TOF instrument. [Pg.382]

The first part of this book is dedicated to a discussion of mass spectrometry (MS) instrumentation. We start with a list of basic definitions and explanations (Chapter 1). Chapter 2 is devoted to the mass spectrometer and its building blocks. In this chapter we describe in relative detail the most common ion sources, mass analyzers, and detectors. Some of the techniques are not extensively used today, but they are often cited in the MS literature, and are important contributions to the history of MS instrumentation. In Chapter 3 we describe both different fragmentation methods and several typical tandem MS analyzer configurations. Chapter 4 is somewhat of an outsider. Separation methods is certainly too vast a topic to do full justice in less than twenty pages. However, some separation methods are used in such close alliance with MS that the two techniques are always referred to as one combined analytical tool, for example, GC-MS and LC-MS. In effect, it is almost impossible to study the MS literature without coming across at least one separation method. Our main goal with Chapter 4 is, therefore, to facilitate an introduction to the MS literature for the reader by providing a short summary of the basic principles of some of the most common separation methods that have been used in conjunction with mass spectrometry. [Pg.3]

A tandem-in-space mass spectrometer consists of an ion source, a precursor ion activation device, and at least two nontrapping mass analyzers. The first mass analyzer is used to select precursor ions within a narrow m/z range. Isolated precursor ions are allowed to enter the ion activation device, for example, a gas-filled collision cell, where they dissociate. Created fragments continue on to the second mass analyzer for analysis. The second mass analyzer can either acquire a full mass fragment spectrum or be set to monitor a selected, narrow, m/z range. In principle the second mass analyzer could be followed by more ion activation devices and mass analyzers for MSn experiments. However, due to rapidly decreasing transmission and increasing experimental... [Pg.91]

Low Mass Region. All spectra shown in the examples were acquired using the quadmpole ion trap mass spectrometer. As noted previously, this widely used and relatively cheap mass analyzer suffers the low-mass cut-off phenomena. In addition to techniques used in the examples shown above, other mass analyzers applied for tandem mass spectrometers may cover the low mass region of the fragmentation spectmm that can be information rich. [Pg.205]

Consider one small molecule, phenylalanine. It is an essential amino acid in our diet and is important in protein synthesis (a component of protein), as well as a precursor to tyrosine and neurotransmitters. Phenylalanine is one of several amino acids that are measured in a variety of clinical methods, which include immunoassay, fluorometry, high performance liquid chromatography (HPLC see Section 4.1.2) and most recently MS/MS (see Chapter 3). Historically, screening labs utilized immunoassays or fluorimetric analysis. Diagnostic metabolic labs used the amino acid analyzer, which was a form of HPLC. Most recently, the tandem mass spectrometer has been used extensively in screening labs to analyze amino acids or in diagnostic labs as a universal detector for GC and LC techniques. Why did MS/MS replace older technological systems The answer to this question lies in the power of mass spectrometer. [Pg.289]

HPLC - Beckman 125 binary gradient pumps, 168 diode-array detector, 507 autosampler MS - Ion-trap mass spectrometer Finnigan LCQ equipped by APCI (atmospheric pressure chemical ionization), data analyzed in negative mode, spectra confirming found compounds were obtained from tandem mass spectromectry (MS/MS). [Pg.215]

In tandem MS mode, because the product ions are recorded with the same TOF mass analyzers as in full scan mode, the same high resolution and mass accuracy is obtained. Isolation of the precursor ion can be performed either at unit mass resolution or at 2-3 m/z units for multiply charged ions. Accurate mass measurements of the elemental composition of product ions greatly facilitate spectra interpretation and the main applications are peptide analysis and metabolite identification using electrospray iomzation [68]. In TOF mass analyzers accurate mass determination can be affected by various parameters such as (i) ion intensities, (ii) room temperature or (iii) detector dead time. Interestingly, the mass spectrum can be recalibrated post-acquisition using the mass of a known ion (lock mass). The lock mass can be a cluster ion in full scan mode or the residual precursor ion in the product ion mode. For LC-MS analysis a dual spray (LockSpray) source has been described, which allows the continuous introduction of a reference analyte into the mass spectrometer for improved accurate mass measurements [69]. The versatile precursor ion scan, another specific feature of the triple quadrupole, is maintained in the QqTOF instrument. However, in pre-... [Pg.35]


See other pages where Mass spectrometer tandem analyzer is mentioned: [Pg.119]    [Pg.151]    [Pg.205]    [Pg.539]    [Pg.139]    [Pg.14]    [Pg.1029]    [Pg.1030]    [Pg.6]    [Pg.1146]    [Pg.1001]    [Pg.58]    [Pg.14]    [Pg.29]    [Pg.251]    [Pg.255]    [Pg.217]    [Pg.59]    [Pg.95]    [Pg.374]    [Pg.383]    [Pg.384]    [Pg.388]    [Pg.393]    [Pg.395]    [Pg.164]    [Pg.173]    [Pg.422]    [Pg.429]    [Pg.148]    [Pg.151]    [Pg.152]    [Pg.25]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Mass analyzer

Mass spectrometer analyzers

© 2024 chempedia.info